P. Alves
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Alves.
The Epma Journal | 2010
Jorge F. J. Coelho; Paula Ferreira; P. Alves; Rosemeyre A. Cordeiro; Ana C. Fonseca; Joana R. Góis; M.H. Gil
Advanced drug delivery systems (DDS) present indubitable benefits for drug administration. Over the past three decades, new approaches have been suggested for the development of novel carriers for drug delivery. In this review, we describe general concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes). This review is composed of two parts. The first part provides an overview on currently available drug delivery technologies including a brief history on the development of these systems and some of the research strategies applied. The second part provides information about the most advanced drug delivery devices using stimuli-responsive polymers. Their synthesis using controlled-living radical polymerization strategy is described. In a near future it is predictable the appearance of new effective tailor-made DDS, resulting from knowledge of different interdisciplinary sciences, in a perspective of creating personalized medical solutions.
Colloids and Surfaces B: Biointerfaces | 2010
S. Pinto; P. Alves; Cláudia Matos; Ana Cristina Santos; L. R. Rodrigues; J. A. Teixeira; M.H. Gil
Poly(dimethyl siloxane) elastomer, (PDMS) is widely used as a biomaterial. However, PDMS is very hydrophobic and easily colonized by several bacteria and yeasts. Consequently, surface modification has been used to improve its wettability and reduce bacterial adhesion. The aim of this work was to modify the PDMS surface in order to improve its hydrophilicity and bacterial cell repulsion to be used as a biomaterial. Plasma was used to activate the PDMS surface and sequentially promote the attachment of a synthetic surfactant, Pluronic F-68, or a polymer, Poly(ethylene glycol) methyl methacrylate, PEGMA. Bare PDMS, PDMS argon plasma activated, PDMS coated with Pluronic F-68 and PEGMA-grafted PDMS were characterized by contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The influence of the surface modifications on blood compatibility of the materials was evaluated by thrombosis and haemolysis assays. The cytotoxicity of these materials was tested for mouse macrophages. After modification, AFM results suggest the presence of a distinct layer at the surface and by the contact angle measures it was observed an increase of hydrophilicity. XPS analysis indicates an increase of the oxygen content at the surface as a result of the modification. All the studied materials revealed no toxicity and were found to be non-haemolytic or in some cases slightly haemolytic. Therefore, plasma was found to be an effective technique for the PDMS surface modification.
International Journal of Biological Macromolecules | 2011
Patrícia Coimbra; P. Alves; Tiago António Martins Valente; Rita Santos; Ilídio J. Correia; Paula Ferreira
In the present study, small-sized porous scaffolds were obtained from the freeze-drying of sodium hyaluronate/chitosan polyelectrolyte complexes. The obtained materials were characterized by a set of techniques including attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, swelling determination and weight loss studies. The morphology of the scaffolds was observed using scanning electron microscopy. Thermal characterization of the scaffolds was also performed by dynamic mechanical thermal analysis and thermogravimetric analysis. Finally, the cytotoxic profile of the prepared scaffolds was evaluated in vitro, using mesenchymal stem cells. The results obtained showed that cells adhered to scaffolds and proliferated. This study also confirmed that the degradation by-products of sodium hyaluronate/chitosan scaffold are noncytotoxic, which is fundamental for its application in the biomedical field.
Colloids and Surfaces B: Biointerfaces | 2011
P. Alves; S. Pinto; Jean-Pierre Kaiser; Arie Bruinink; Hermínio C. de Sousa; M.H. Gil
The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV.
Science and Technology of Advanced Materials | 2013
Paula Ferreira; Álvaro M. F. De Carvalho; Tiago Ruivo Correia; Bernardo Paiva Antunes; Ilídio J. Correia; P. Alves
Abstract The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the materials biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.
Journal of Microencapsulation | 2008
Elisa J. Campos; Rosemeyre A. Cordeiro; P. Alves; M. G. Rasteiro; M.H. Gil
This study reports the development of polyurethane-based microparticles and the influence of some processes variables on its characteristics. These microparticles were prepared by emulsion polymerization, using poly(caprolactone) diol (PCL) and poly(propylene glycol), tolylene 2,4-diisocyanate terminated (TDI) or poly(propylene oxide)-based tri-isocyanated pre-polymer (TI). The reaction of polymerization was confirmed by attenuated total internal reflection Fourier transformed infrared spectroscopy (ATR-FTIR). Their thermal characteristics were investigated by dynamical mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). For good microparticles formation, formulation 80/20 (mass ratio isocyanate/PCL) was the most indicated. Their spherical shape and smooth surface were observed by optical and scanning electron microscopy (SEM). Zeta potential measurements suggest that ionized carbonyl groups existent at the surface can be responsible for the negative potentials obtained. Respecting size and size distribution of the particles, measured by laser diffraction spectroscopy (LDS), the stirring speed and type were the process variables that most influenced it.
International Journal of Biological Macromolecules | 2016
Tiago Ruivo Correia; Paula Ferreira; Rita Vaz; P. Alves; Margarida Figueiredo; Ilídio J. Correia; Patrícia Coimbra
Cardiovascular disease is the leading cause of morbidity and mortality among industrialized countries. Vascular grafts are often required for the surgical treatments. Considering the limitations associated with the use of autografts and with the currently available synthetic materials, a growing demand in tissue engineered vascular grafts has been registered. During the work here described, electrospinning technique was used to prepared fibrous matrices to be applied as vascular implants. For that purpose, electrospun polycaprolactone (PCL) fibrous mats were produced and afterwards coated with different hydrogel formulations based in photocrosslinkable gelatin (GelMA) and the macromers poly(ethylene glycol) acrylate (PEGA) and poly(ethylene glycol) diacrylate (PEGDA). These were further photocrosslinked under UV irradiation using Irgacure® 2959 (by BASF) as the photoinitiator. The suitability of the coated scaffolds for the intended application, was evaluated by assessing their chemical/physical properties as well as their interaction with blood and endothelial cells.
Journal of Biomedical Materials Research Part A | 2011
S. Pinto; P. Alves; Ana Cristina Santos; Cláudia Matos; B. Oliveiros; Sara Gonçalves; Eduardo J. Gudiña; L. R. Rodrigues; J. A. Teixeira; M.H. Gil
Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field.
Colloids and Surfaces B: Biointerfaces | 2013
P. Alves; A.A. Hugo; E.E. Tymczyszyn; André F. Ferreira; Rui Fausto; Pablo F. Pérez; Jorge F. J. Coelho; Pedro N. Simões; Andrea Gómez-Zavaglia
The development of new polymer-liposome complexes (PLCs) as delivery systems is the key issue of this work. Three main areas are dealt with: polymer synthesis/characterization, liposome formulation/characterization and evaluation of the PLCs uptake by eukaryotic cells. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with low molecular weight and narrow polydispersity was synthesized by Atom Transfer Radical Polymerization (ATRP). The polymers were synthesized using two different bromide initiators (cholesteryl-2-bromoisobutyrate and ethyl 2-bromoisobutyrate) as a route to afford PDMAEMA and CHO-PDMAEMA. Both synthesized polymers (PDMAEMA and CHO-PDMAEMA) were incorporated in the preparation of lecithin liposomes (LEC) to obtain PLCs. Three polymer/lipid ratios were investigated: 5, 10 and 20%. Physicochemical characterization of PLCs was carried out by determining the zeta potential, particle size distribution, and the release of fluorescent dyes (carboxyfluorescein CF and calcein) at different temperatures and pHs. The leakage experiments showed that CHO covalently bound to PDMAEMA strongly stabilizes PLCs. The incorporation of 5% CHO-PDMAEMA to LEC (LEC_CHO-PD5) appeared to be the stablest preparation at pH 7.0 and at 37°C. LEC_CHO-PD5 destabilized upon slight changes in pH and temperature, supporting the potential use of CHO-PDMAEMA incorporated to lecithin liposomes (LEC_CHO-PDs) as stimuli-responsive systems. In vitro studies on Raw 264.7 and Caco-2/TC7 cells demonstrated an efficient incorporation of PLCs into the cells. No toxicity of the prepared PLCs was observed according to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. These results substantiate the efficiency of CHO-PDMAEMA incorporated onto LEC to assist for the release of the liposome content in mildly acidic environments, like those found in early endosomes where pH is slightly lower than the physiologic. In summary, the main achievements of this work are: (a) novel synthesis of CHO-PDMAEMA by ATRP, (b) stabilization of LEC by incorporation of CHO-PDMAEMA at neutral pH and destabilization upon slight changes of pH, (c) efficient uptake of LEC_CHO-PDs by phagocytic and non-phagocytic eukaryotic cells.
International Journal of Biological Macromolecules | 2013
J.F. Almeida; Paula Ferreira; P. Alves; António Lopes; M.H. Gil
Gamma radiation was used as the initiator/crosslinker agent for the synthesis of thermo-sensitive hydrogel networks, under the form of membranes, using dextran and N-isopropylacrylamide. The prepared membranes were loaded with Ondansetron™, a potent antiemetic drug and tested as drug delivery systems. The characterization of the materials was accomplished by: Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, elemental analysis, lower critical solution temperature (LCST) determination, swelling behaviour evaluation, determination of surface energy by contact angle measurement and drug delivery kinetics studies. Also, the influence of irradiation time and temperature on the materials properties was evaluated.