P. Andreas Jonsson
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Andreas Jonsson.
Neuron | 2004
Jian Liu; Concepción Lillo; P. Andreas Jonsson; Christine Vande Velde; Christopher M. Ward; Timothy M. Miller; Jamuna R. Subramaniam; Jeffery Rothstein; Stefan L. Marklund; Peter Andersen; Thomas Brännström; Ole Gredal; Philip C. Wong; David S. Williams; Don W. Cleveland
One cause of amyotrophic lateral sclerosis (ALS) is mutation in ubiquitously expressed copper/zinc superoxide dismutase (SOD1), but the mechanism of toxicity to motor neurons is unknown. Multiple disease-causing mutants, but not wild-type SOD1, are now demonstrated to be recruited to mitochondria, but only in affected tissues. This is independent of the copper chaperone for SOD1 and dismutase activity. Highly preferential association with spinal cord mitochondria is seen in human ALS for a mutant SOD1 that accumulates only to trace cytoplasmic levels. Despite variable proportions that are successfully imported, nearly constant amounts of SOD1 mutants and covalently damaged adducts of them accumulate as apparent import intermediates and/or are tightly aggregated or crosslinked onto integral membrane components on the cytoplasmic face of those mitochondria. These findings implicate damage from action of spinal cord-specific factors that recruit mutant SOD1 to spinal mitochondria as the basis for their selective toxicity in ALS.
PLOS ONE | 2010
Karin Forsberg; P. Andreas Jonsson; Peter Andersen; Daniel Bergemalm; Karin S. Graffmo; Magnus Hultdin; Johan Jacobsson; Roland Rosquist; Stefan L. Marklund; Thomas Brännström
Mutations in CuZn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) and are found in 6% of ALS patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1. These were used to examine SOD1 in spinal cords of ALS patients lacking mutations in the enzyme. Small granular SOD1-immunoreactive inclusions were found in spinal motoneurons of all 37 sporadic and familial ALS patients studied, but only sparsely in 3 of 28 neurodegenerative and 2 of 19 non-neurological control patients. The granular inclusions were by confocal microscopy found to partly colocalize with markers for lysosomes but not with inclusions containing TAR DNA binding protein-43, ubiquitin or markers for endoplasmic reticulum, autophagosomes or mitochondria. Granular inclusions were also found in carriers of SOD1 mutations and in spinobulbar muscular atrophy (SBMA) patients and they were the major type of inclusion detected in ALS patients homozygous for the wild type-like D90A mutation. The findings suggest that SOD1 may be involved in ALS pathogenesis in patients lacking mutations in the enzyme.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Per Zetterström; Heather Stewart; Daniel Bergemalm; P. Andreas Jonsson; Karin S. Graffmo; Peter Andersen; Thomas Brännström; Mikael Oliveberg; Stefan L. Marklund
Mutants of superoxide dismutase-1 (SOD1) cause ALS by an unidentified cytotoxic mechanism. We have previously shown that the stable SOD1 mutants D90A and G93A are abundant and show the highest levels in liver and kidney in transgenic murine ALS models, whereas the unstable G85R and G127X mutants are scarce but enriched in the CNS. These data indicated that minute amounts of misfolded SOD1 enriched in the motor areas might exert the ALS-causing cytotoxicity. A hydrophobic interaction chromatography (HIC) protocol was developed with the aim to determine the abundance of soluble misfolded SOD1 in tissues in vivo. Most G85R and G127X mutant SOD1s bound in the assay, but only minute subfractions of the D90A and G93A mutants. The absolute levels of HIC-binding SOD1 were, however, similar and broadly inversely related to lifespans in the models. They were generally enriched in the susceptible spinal cord. The HIC-binding SOD1 was composed of disulfide-reduced subunits lacking metal ions and also subunits that apparently carried nonnative intrasubunit disulfide bonds. The levels were high from birth until death and were comparable to the amounts of SOD1 that become sequestered in aggregates in the terminal stage. The HIC-binding SOD1 species ranged from monomeric to trimeric in size. These species form a least common denominator amongst SOD1 mutants with widely different molecular characteristics and might be involved in the cytotoxicity that causes ALS.
The Journal of Neuroscience | 2006
Daniel Bergemalm; P. Andreas Jonsson; Karin S. Graffmo; Peter Andersen; Thomas Brännström; Anna Rehnmark; Stefan L. Marklund
Mutants of human superoxide dismutase-1 (hSOD1) cause amyotrophic lateral sclerosis (ALS), and mitochondria are thought to be primary targets of the cytotoxic action. The high expression rates of hSOD1s in transgenic ALS models give high levels of the stable mutants G93A and D90A as well as the wild-type human enzyme, significant proportions of which lack Cu and the intrasubunit disulfide bond. The endogenous murine SOD1 (mSOD1) also lacks Cu and is disulfide reduced but is active and oxidized in mice expressing the low-level unstable mutants G85R and G127insTGGG. The possibility that the molecular alterations may cause artificial loading of the stable hSOD1s into mitochondria was explored. Approximately 10% of these hSOD1s were localized to mitochondria, reaching levels 100-fold higher than those of mSOD1 in control mice. There was no difference between brain and spinal cord and between stable mutants and the wild-type hSOD1. mSOD1 was increased fourfold in mitochondria from high-level hSOD1 mice but was normal in those with low levels, suggesting that the Cu deficiency and disulfide reduction cause mitochondrial overloading. The levels of G85R and G127insTGGG mutant hSOD1s in mitochondria were 100- and 1000-fold lower than those of stable mutants. Spinal cords from symptomatic mice contained hSOD1 aggregates covering the entire density gradient, which could contaminate isolated organelle fractions. Thus, high hSOD1 expression rates can cause artificial loading of mitochondria. Unstable low-level hSOD1s are excluded from mitochondria, indicating other primary locations of injury. Such models may be preferable for studies of ALS pathogenesis.
Journal of Neuropathology and Experimental Neurology | 2006
P. Andreas Jonsson; Karin S. Graffmo; Thomas Brännström; Peter Nilsson; Peter Andersen; Stefan L. Marklund
Mutant human CuZn-superoxide dismutases (hSOD1s) cause amyotrophic lateral sclerosis (ALS). The most common mutation is the wild type-like D90A and to explore its properties, transgenic mice were generated and compared with mice expressing wild-type hSOD1. D90A hSOD1 was both in vivo in mice and in vitro under denaturing conditions nearly as stable as the wild-type human enzyme. It appeared less toxic than other tested mutants, but mice homozygous for the transgene insertion developed a fatal motor neuron disease. In these mice, the disease progression was slow and there were bladder disturbances similar to what is found in human ALS cases homozygous for the D90A mutation. The homozygous D90A mice accumulated detergent-resistant hSOD1 aggregates in spinal cords, and abundant hSOD1 inclusions and vacuoles were seen in the ventral horns. Mice expressing wild-type hSOD1 at a comparable rate showed similar pathologic changes but less and later. Hemizygous D90A mice showed even milder alterations. At 600 days, the wild-type hSOD1 transgenic mice had lost more ventral horn neurons than hemizygous D90A mice (38% vs 31% p < 0.01). Thus, wild-type hSOD1 shows a significant neurotoxicity in the spinal cord, that is less than equal but more than half as large as that of D90A mutant enzyme.
Clinical Chemistry and Laboratory Medicine | 2008
Olof Wallin; Johan Söderberg; Kjell Grankvist; P. Andreas Jonsson; Johan Hultdin
Abstract Background: Pneumatic tube transport of blood samples reduces turnaround times and labour. However, the preanalytical effects on new clinical chemistry parameters and instruments are not fully known. The aim of this study was to evaluate the effect of pneumatic tube transport on haematology and coagulation parameters, including platelet function with PFA-100®, and global coagulation with a thromboelastograph. Methods: Paired venous blood samples from healthy volunteers were obtained before and after 1 week of treatment with acetylsalicylic acid. One sample was transported by pneumatic tube transport, while the other remained in the laboratory. Results: No preanalytical effect of pneumatic tube transport could be seen for most haematology and coagulation parameters, as well as analysis with PFA-100®. For the thromboelastographic analysis, time to clot formation was shorter (–16%, p=0.037) in the transported samples. Treatment with acetylsalicylic acid had no effect on the majority of the test results. Conclusions: Pneumatic tube transport does not introduce preanalytical errors when transporting samples for analysis of routine haematology, coagulation parameters and platelet function with the PFA-100®. We recommend manual transport of samples for analysis with thromboelastographic techniques. Clin Chem Lab Med 2008;46:1443–9.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Johan Bergh; Per Zetterström; Peter Andersen; Thomas Brännström; Karin S. Graffmo; P. Andreas Jonsson; Lisa Lang; Jens Danielsson; Mikael Oliveberg; Stefan L. Marklund
Significance The levels of aggregated specific proteins in the CNS in neurodegenerative diseases are minute, hampering analysis of structure and growth kinetics. Here we describe a generally applicable method based on binary epitope mapping. It was applied to analysis of superoxide dismutase aggregation in amyotrophic lateral sclerosis model mice. Two different strains of aggregates with different structures, physical stabilities, and growth kinetics were readily distinguished. Moreover, they were different from superoxide dismutase aggregates formed in vitro under a variety of conditions, revealing a key role of the CNS in shaping the aggregation process. Despite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem. The method is based on binary epitope mapping using anti-peptide antibodies. We assessed the usefulness and versatility of the method in mice modeling the neurodegenerative disease amyotrophic lateral sclerosis, which accumulate intracellular aggregates of superoxide dismutase-1. Two strains of aggregates were identified with different structural architectures, molecular properties, and growth kinetics. Both were different from superoxide dismutase-1 aggregates generated in vitro under a variety of conditions. The strains, which seem kinetically under fragmentation control, are associated with different disease progressions, complying with and adding detail to the growing evidence that seeding, infectivity, and strain dependence are unifying principles of neurodegenerative disease.
Neurobiology of Disease | 2002
P. Andreas Jonsson; Åsa Bäckstrand; Peter Andersen; Johan Jacobsson; Matthew J. Parton; Christopher Shaw; Robert Swingler; Pamela J. Shaw; Wim Robberecht; Albert C. Ludolph; Teepu Siddique; Veronica I Skvortsova; Stefan L. Marklund
Mutations in CuZn-superoxide dismutase (CuZn-SOD) have been linked to ALS. In most cases ALS is inherited as a dominant trait and there is marked reduction in CuZn-SOD activity in samples from the patients. The D90A mutation, however, mostly causes ALS as a recessive trait and shows near normal CuZn-SOD activity. A few familial and sporadic ALS cases heterozygous for the D90A mutation have also been found. Haplotype analysis of both types of D90A families has suggested that all recessive cases share a common founder and may carry a protective factor located close to the D90A mutant CuZn-SOD locus. To search for effects of a putative protective factor we analysed erythrocytes from D90A heterozygous individuals for SOD activity by a direct assay, subunit composition by immunoblotting, and zymogram pattern formed by isoelectric focusing and SOD staining. Included were heterozygotes from 17 recessive families, and from 2 dominant families and 4 apparently sporadic cases. The CuZn-SOD activity in the recessive and dominant groups was found to be equal, and 95% of controls. The ratio between mutant and wildtype subunits was likewise equal and 0.8:1 in both groups. The zymograms revealed multiple bands representing homo- and heterodimers. There were, however, no differences between the groups in patterns or in ratios between the molecular forms. In conclusion we find no evidence from analyses in erythrocytes that the putative protective factor in recessive families acts by simply downregulating the synthesis or altering the molecular structure or turnover of the mutant enzyme.
Molecular & Cellular Proteomics | 2009
Daniel Bergemalm; Karin Forsberg; P. Andreas Jonsson; Karin S. Graffmo; Thomas Brännström; Peter Andersen; Henrik Antti; Stefan L. Marklund
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by loss of motor neurons resulting in progressive paralysis. To date, more than 140 different mutations in the gene encoding CuZn-superoxide dismutase (SOD1) have been associated with ALS. Several transgenic murine models exist in which various mutant SOD1s are expressed. We used DIGE to analyze the changes in the spinal cord proteome induced by expression of the unstable SOD1 truncation mutant G127insTGGG (G127X) in mice. Unlike mutants used in most other models, G127X lacks SOD activity and is present at low levels, thus reducing the risk of overexpression artifacts. The mice were analyzed at their peak body weights just before onset of symptoms. Variable importance plot analysis showed that 420 of 1,800 detected protein spots contributed significantly to the differences between the groups. By MALDI-TOF MS analysis, 54 differentially regulated proteins were identified. One spot was found to be a covalently linked mutant SOD1 dimer, apparently analogous to SOD1-immunoreactive bands migrating at double the molecular weight of SOD1 monomers previously detected in humans and mice carrying mutant SOD1s and in sporadic ALS cases. Analyses of affected functional pathways and the subcellular representation of alterations suggest that the toxicity exerted by mutant SODs induces oxidative stress and affects mitochondria, cellular assembly/organization, and protein degradation.
Annals of Neurology | 2008
P. Andreas Jonsson; Daniel Bergemalm; Peter Andersen; Ole Gredal; Thomas Brännström; Stefan L. Marklund
Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant‐specific antibody. Still, both absolute levels and ratios versus wild‐type SOD1 were considerably greater than in other central nervous system areas and peripheral organs. Inclusions of mutant SOD1 were abundant in motoneurons but were also seen in hepatocytes and kidney epithelium. This first examination of mutant SOD1 in both central nervous system and peripheral organs supports the notion that enrichment of misfolded SOD1s might explain the particular vulnerability of motor areas. Ann Neurol 2008