Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Antici is active.

Publication


Featured researches published by P. Antici.


Science | 2006

Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons

T. Toncian; M. Borghesi; J. Fuchs; Emmanuel d'Humieres; P. Antici; Patrick Audebert; E. Brambrink; C. A. Cecchetti; A. Pipahl; L. Romagnani; O. Willi

We present a technique for simultaneous focusing and energy selection of high-current, mega–electron volt proton beams with the use of radial, transient electric fields (107 to 1010 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, such as their broad spectrum and divergence at the source.


Physics of Plasmas | 2007

Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets

P. Antici; J. Fuchs; E. d’Humières; E. Lefebvre; M. Borghesi; E. Brambrink; C. A. Cecchetti; Sandrine A. Gaillard; L. Romagnani; Y. Sentoku; T. Toncian; O. Willi; P. Audebert; H. Pépin

A regime of laser acceleration of protons, which relies on the interaction of ultrahigh contrast laser pulses with ultrathin targets, has been validated using experiments and simulations. Proton beams were accelerated to a maximum energy of ∼7.3MeV from targets as thin as 30nm irradiated at 1018Wcm−2μm2 (1J, 320fs) with an estimated peak laser pulse to pedestal intensity contrast ratio of 1011. This represents nearly a tenfold increase in proton energy compared to the highest energies obtainable using non contrast enhanced pulses and thicker targets (>5μm) at the same intensity. To obtain similar proton energy with thicker targets and the same laser pulse duration, a much higher laser intensity (i.e., above 1019Wcm−2μm2) is required. The simulations are in close agreement with the experimental results, showing efficient electron heating compared to the case of thicker targets. Rapid target expansion, allowing laser absorption in density gradients, is key to enhanced electron heating and ion acceleration i...


Review of Scientific Instruments | 2008

Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors

A. Mancic; J. Fuchs; P. Antici; Sandrine A. Gaillard; P. Audebert

In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal.


Physics of Plasmas | 2007

Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils

Jean-Noël Fuchs; Y. Sentoku; Emmanuel d'Humieres; T. E. Cowan; J. A. Cobble; P. Audebert; Andreas Kemp; A. Nikroo; P. Antici; Erik Brambrink; A. Blazevic; E. M. Campbell; Juan C. Fernandez; J. C. Gauthier; M. Geissel; Manuel Hegelich; Stefan Karsch; H. Popescu; N. Renard-LeGalloudec; Markus Roth; Jörg Schreiber; R. Stephens; H. Pépin

The maximum energy of protons that are accelerated forward by high-intensity, short-pulse lasers from either the front or rear surfaces of thin metal foils is compared for a large range of laser intensities and pulse durations. In the regime of moderately long laser pulse durations (300–850fs), and for high laser intensities [(1−6)×1019W∕cm2], rear-surface acceleration is shown experimentally to produce higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. For similar laser pulse durations but for lower laser intensities (2×1018Wcm−2), the same conclusion is reached from direct proton radiography of the electric fields associated with proton acceleration from the rear surface. For shorter (30–100fs) or longer (1–10ps) laser pulses, the same predominance of rear-surface acceleration in producing the highest energy protons is suggested by simulations and by comparison of analytical models with measured values. For this purpose, we have revised our previous ...


Laser and Particle Beams | 2007

Impulsive electric fields driven by high-intensity laser matter interactions

M. Borghesi; S. Kar; L. Romagnani; T. Toncian; P. Antici; P. Audebert; E. Brambrink; F. Ceccherini; C. A. Cecchetti; J. Fuchs; M. Galimberti; L. A. Gizzi; T. Grismayer; T. Lyseikina; R. Jung; Andrea Macchi; P. Mora; J. Osterholtz; A. Schiavi; O. Willi

Theinteractionofhigh-intensitylaserpulseswithmatterreleasesinstantaneouslyultra-largecurrentsofhighlyenergetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiments in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channeling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation andMeVionfrontexpansionattherearoflaser-irradiatedthinmetallicfoils.Laser-drivenimpulsivefieldsatthesurface of solid targets can be applied for energy-selective ion beam focusing.


Journal of Applied Physics | 2013

Electron Linac design to drive bright Compton back-scattering gamma-ray sources

A. Bacci; D. Alesini; P. Antici; M. Bellaveglia; R. Boni; E. Chiadroni; A. Cianchi; C. Curatolo; G. Di Pirro; A. Esposito; M. Ferrario; A. Gallo; G. Gatti; A. Ghigo; M. Migliorati; A. Mostacci; L. Palumbo; V. Petrillo; R. Pompili; C. Ronsivalle; A. R. Rossi; L. Serafini; B. Spataro; P. Tomassini; C. Vaccarezza

The technological development in the field of high brightness linear accelerators and high energy/high quality lasers enables today designing high brilliance Compton-X and Gamma-photon beams suitable for a wide range of applications in the innovative field of nuclear photonics. The challenging requirements of this kind of source comprise: tunable energy (1–20 MeV), very narrow bandwidth (0.3%), and high spectral density (104 photons/s/eV). We present here a study focused on the design and the optimization of an electron Linac aimed to meet the source specifications of the European Extreme Light Infrastructure—Nuclear Physics project, currently funded and seeking for an innovative machine design in order to outperform state-of-the-art facilities. We show that the phase space density of the electron beam, at the collision point against the laser pulse, is the main quality factor characterizing the Linac.


Journal of Applied Physics | 2008

Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration

J. Badziak; S. Jablonski; P. Parys; M. Rosiński; J. Wolowski; A. Szydłowski; P. Antici; J. Fuchs; A. Mancic

The results of studies of high-intensity proton beam generation from thin (1–3 μm) solid targets irradiated by 0.35 ps laser pulse of energy up to 15 J and intensity up to 2×1019 W/cm2 are reported. It is shown that the proton beams of terawatt power and intensity around 1018 W/cm2 at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The proton beam parameters remarkably depend on the target structure and can be significantly increased with the use of a double-layer Au/PS target (plastic covered by 0.1–0.2 μm Au front layer).


Journal of Applied Physics | 2012

Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

P. Antici; A. Bacci; C. Benedetti; E. Chiadroni; M. Ferrario; Andrea Rossi; L. Lancia; M. Migliorati; A. Mostacci; L. Palumbo; Luca Serafini

Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.


Laser and Particle Beams | 2008

Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions

L. Romagnani; M. Borghesi; C. A. Cecchetti; S. Kar; P. Antici; P. Audebert; S. Bandhoupadjay; F. Ceccherini; T. E. Cowan; J. Fuchs; M. Galimberti; L. A. Gizzi; T. Grismayer; R. Heathcote; R. Jung; T. V. Liseykina; Andrea Macchi; P. Mora; D. Neely; M. Notley; J. Osterholtz; C.A. Pipahl; G. Pretzler; A. Schiavi; G. Schurtz; T. Toncian; P.A. Wilson; O. Willi

The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.


Journal of Applied Physics | 2008

Numerical study of a linear accelerator using laser-generated proton beams as a source

P. Antici; M. Fazi; A. Lombardi; M. Migliorati; L. Palumbo; P. Audebert; J. Fuchs

The injection of laser-generated protons through conventional drift tube linear accelerators (linacs) has been studied numerically. For this, we used the parameters of the proton source produced by ultraintense lasers, i.e., with an intrinsic high beam quality. The numerical particle tracing code PARMELA [L. M. Young and J. H. Billen, LANL Report No. LA-UR-96-1835, 2004] is then used to inject experimentally measured laser-generated protons with energies of 7±0.1 MeV and rms un-normalized emittance of 0.180 mm mrad into one drift tube linac tank that accelerated them to more than 14 MeV. The simulations exhibit un-normalized emittance growths of 8 in x direction and 22.6 in y direction, with final emittances lower than those produced using conventional sources, allowing a potential luminosity gain for the final beam. However, the simulations also exhibit a limitation in the allowed injected proton charge as, over 0.112 mA, space charge effect worsens significantly the beam emittance.

Collaboration


Dive into the P. Antici's collaboration.

Top Co-Authors

Avatar

J. Fuchs

École Polytechnique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Borghesi

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

O. Willi

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Toncian

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. A. Cecchetti

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Mora

École Polytechnique

View shared research outputs
Researchain Logo
Decentralizing Knowledge