Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P.B. Chase is active.

Publication


Featured researches published by P.B. Chase.


Biophysical Journal | 1997

Calcium regulation of skeletal muscle thin filament motility in vitro

Albert M. Gordon; M.A. LaMadrid; Ying Chen; Zhaoxiong Luo; P.B. Chase

Using an in vitro motility assay, we have investigated Ca2+ regulation of individual, regulated thin filaments reconstituted from rabbit fast skeletal actin, troponin, and tropomyosin. Rhodamine-phalloidin labeling was used to visualize the filaments by epifluorescence, and assays were conducted at 30 degrees C and at ionic strengths near the physiological range. Regulated thin filaments exhibited well-regulated behavior when tropomyosin and troponin were added to the motility solutions because there was no directed motion in the absence of Ca2+. Unlike F-actin, the speed increased in a graded manner with increasing [Ca2+], whereas the number of regulated thin filaments moving was more steeply regulated. With increased ionic strength, Ca2+ sensitivity of both the number of filaments moving and their speed was shifted toward higher [Ca2+] and was steepest at the highest ionic strength studied (0.14 M gamma/2). Methylcellulose concentration (0.4% versus 0.7%) had no effect on the Ca2+ dependence of speed or number of filaments moving. These conclusions hold for five different methods used to analyze the data, indicating that the conclusions are robust. The force-pCa relationship (pCa = -log10[Ca2+]) for rabbit psoas skinned fibers taken under similar conditions of temperature and solution composition (0.14 M gamma/2) paralleled the speed-pCa relationship for the regulated filaments in the in vitro motility assay. Comparison of motility results with the force-pCa relationship in fibers suggests that relatively few cross-bridges are needed to make filaments move, but many have to be cycling to make the regulated filament move at maximum speed.


Biophysical Journal | 1998

Calcium Regulation of Tension Redevelopment Kinetics with 2-Deoxy-ATP or Low [ATP] in Rabbit Skeletal Muscle

Michael Regnier; Donald A. Martyn; P.B. Chase

The correlation of acto-myosin ATPase rate with tension redevelopment kinetics (k(tr)) was determined during Ca(+2)-activated contractions of demembranated rabbit psoas muscle fibers; the ATPase rate was either increased or decreased relative to control by substitution of ATP (5.0 mM) with 2-deoxy-ATP (dATP) (5.0 mM) or by lowering [ATP] to 0.5 mM, respectively. The activation dependence of k(tr) and unloaded shortening velocity (Vu) was measured with each substrate. With 5.0 mM ATP, Vu depended linearly on tension (P), whereas k(tr) exhibited a nonlinear dependence on P, being relatively independent of P at submaximum levels and rising steeply at P > 0.6-0.7 of maximum tension (Po). With dATP, Vu was 25% greater than control at Po and was elevated at all P > 0.15Po, whereas Po was unchanged. Furthermore, the Ca(+2) sensitivity of both k(tr) and P increased, such that the dependence of k(tr) on P was not significantly different from control, despite an elevation of Vu and maximal k(tr). In contrast, lowering [ATP] caused a slight (8%) elevation of Po, no change in the Ca(+2) sensitivity of P, and a decrease in Vu at all P. Moreover, k(tr) was decreased relative to control at P > 0.75Po, but was elevated at P < 0.75Po. These data demonstrate that the cross-bridge cycling rate dominates k(tr) at maximum but not submaximum levels of Ca(2+) activation.


Biophysical Journal | 1994

Isometric force redevelopment of skinned muscle fibers from rabbit activated with and without Ca2

P.B. Chase; Donald A. Martyn; J.D. Hannon

Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0. Maximal reconstitution of fibers with aTnC alone increased force at pCa 9.2 to 69 +/- 5% of maximum control (mean + SD; n = 22 determinations on 13 fibers) and caused a small but significant reduction of kTR to 78 +/- 8% of maximum control (mean +/- SD; n = 22 determinations on 13 fibers); neither force nor krR was significantly affected by Ca>2(pCa 4.0). Taken together, we interpret our results to indicate that kTR reflects the dynamics of activation of individual thin filament regulatory units and that modulation of kTR by Ca> is effected primarily by Ca>+ binding to TnC.


Circulation Research | 2000

2-Deoxy-ATP Enhances Contractility of Rat Cardiac Muscle

Michael Regnier; Anthony J. Rivera; Ying Chen; P.B. Chase

To investigate the kinetic parameters of the crossbridge cycle that regulate force and shortening in cardiac muscle, we compared the mechanical properties of cardiac trabeculae with either ATP or 2-deoxy-ATP (dATP) as the substrate for contraction. Comparisons were made in trabeculae from untreated rats (predominantly V1 myosin) and those treated with propylthiouracil (PTU; V3 myosin). Steady-state hydrolytic activity of cardiac heavy meromyosin (HMM) showed that PTU treatment resulted in >40% reduction of ATPase activity. dATPase activity was >50% elevated above ATPase activity in HMM from both untreated and PTU-treated rats. V(max) of actin-activated hydrolytic activity was also >50% greater with dATP, whereas the K(m) for dATP was similar to that for ATP. This indicates that dATP increased the rate of crossbridge cycling in cardiac muscle. Increases in hydrolytic activity were paralleled by increases of 30% to 80% in isometric force (F(max)), rate of tension redevelopment (k(tr)), and unloaded shortening velocity (V(u)) in trabeculae from both untreated and PTU-treated rats (at maximal Ca(2+) activation), and F-actin sliding speed in an in vitro motility assay (V(f)). These results contrast with the effect of dATP in rabbit psoas and soleus fibers, where F(max) is unchanged even though k(tr), V(u), and V(f) are increased. The substantial enhancement of mechanical performance with dATP in cardiac muscle suggests that it may be a better substrate for contractility than ATP and warrants exploration of ribonucleotide reductase as a target for therapy in heart failure.


The Journal of Physiology | 1993

Effects of inorganic phosphate analogues on stiffness and unloaded shortening of skinned muscle fibres from rabbit.

P.B. Chase; Donald A. Martyn; Martin J. Kushmerick; Albert M. Gordon

1. We examined the effects of aluminofluoride (AlFx) and orthovanadate (Vi), tightly binding analogues of orthophosphate (Pi), on the mechanical properties of glycerinated fibres from rabbit psoas muscle. Maximum Ca(2+)‐activated force, stiffness, and unloaded shortening velocity (Vus) were measured under conditions of steady‐state inhibition (up to 1 mM of inhibitor) and during the recovery from inhibition. 2. Stiffness was measured using either step or sinusoidal (1 kHz) changes in fibre length. Sarcomere length was monitored continuously by helium‐neon laser diffraction during maximum Ca2+ activation. Stiffness was determined from the changes in sarcomere length and the corresponding changes in force. Vus was measured using the slack test method. 3. AlF chi and Vi each reversibly inhibited force, stiffness and Vus. Actively cycling cross‐bridges were required for reversal of these inhibitory effects. Recovery from inhibition by AlF chi was 3‐ to 4‐fold slower than that following removal of V1. 4. At various degrees of inhibition, AlF chi and Vi both inhibited steady‐state isometric force more than either Vus or stiffness. For both AlF chi and Vi, the relatively greater inhibition of force over stiffness persisted during recovery from steady‐state inhibition. We interpret these results to indicate that the cross‐bridges with AlF chi or Vi bound are analogous to those which occur early in the cross‐bridge cycle.


Biophysical Journal | 1996

Calmidazolium alters Ca2+ regulation of tension redevelopment rate in skinned skeletal muscle

Michael Regnier; Donald A. Martyn; P.B. Chase

To examine if the Ca2(+)-binding kinetics of troponin C (TnC) can influence the rate of cross-bridge force production, we studied the effects of calmidazolium (CDZ) on steady-state force and the rate of force redevelopment (ktr) in skinned rabbit psoas muscle fibers. CDZ increased the Ca2(+)-sensitivity of steady-state force and ktr at submaximal levels of activation, but increased ktr to a greater extent than can be explained by increased force alone. This occurred in the absence of any significant effects of CDZ on solution ATPase or in vitro motility of fluorescently labeled F-actin, suggesting that CDZ did not directly influence cross-bridge cycling. CDZ was strongly bound to TnC in aqueous solutions, and its effects on force production could be reversed by extraction of CDZ-exposed native TnC and replacement with purified (unexposed) rabbit skeletal TnC. These experiments suggest that the method of CDZ action in fibers is to bind to TnC and increase its Ca2(+)-binding affinity, which results in an increased rate of force production at submaximal [Ca2+]. The results also demonstrate that the Ca2(+)-binding kinetics of TnC influence the kinetics of ktr.


Biophysical Journal | 1999

REGULATION OF SKELETAL MUSCLE TENSION REDEVELOPMENT BY TROPONIN C CONSTRUCTS WITH DIFFERENT CA2+ AFFINITIES

Michael Regnier; Anthony J. Rivera; P.B. Chase; L.B. Smillie; Martha M. Sorenson

In maximally activated skinned fibers, the rate of tension redevelopment (ktr) following a rapid release and restretch is determined by the maximal rate of cross-bridge cycling. During submaximal Ca2+ activations, however, ktr regulation varies with thin filament dynamics. Thus, decreasing the rate of Ca2+ dissociation from TnC produces a higher ktr value at a given tension level (P), especially in the [Ca2+] range that yields less than 50% of maximal tension (Po). In this study, native rabbit TnC was replaced with chicken recombinant TnC, either wild-type (rTnC) or mutant (NHdel), with decreased Ca2+ affinity and an increased Ca2+ dissociation rate (koff). Despite marked differences in Ca2+ sensitivity (>0.5 DeltapCa50), fibers reconstituted with either of the recombinant proteins exhibited similar ktr versus tension profiles, with ktr low (1-2 s-1) and constant up to approximately 50% Po, then rising sharply to a maximum (16 +/- 0.8 s-1) in fully activated fibers. This behavior is predicted by a four-state model based on coupling between cross-bridge cycling and thin filament regulation, where Ca2+ directly affects only individual thin filament regulatory units. These data and model simulations confirm that the range of ktr values obtained with varying Ca2+ can be regulated by a rate-limiting thin filament process.


Biophysical Journal | 1994

UNLOADED SHORTENING OF SKINNED MUSCLE FIBERS FROM RABBIT ACTIVATED WITH AND WITHOUT CA2

Donald A. Martyn; P.B. Chase; J.D. Hannon; Lee L. Huntsman; Martin J. Kushmerick; Albert M. Gordon

Unloaded shortening velocity (VUS) was determined by the slack method and measured at both maximal and submaximal levels of activation in glycerinated fibers from rabbit psoas muscle. Graded activation was achieved by two methods. First, [Ca2+] was varied in fibers with endogenous skeletal troponin C (sTnC) and after replacement of endogenous TnC with either purified cardiac troponin C (cTnC) or sTnC. Alternatively, fibers were either partially or fully reconstituted with a modified form of cTnC (aTnC) that enables force generation and shortening in the absence of Ca2+. Uniformity of the distribution of reconstituted TnC across the fiber radius was evaluated using fluorescently labeled sTnC and laser scanning fluorescence confocal microscopy. Fiber shortening was nonlinear under all conditions tested and was characterized by an early rapid phase (VE) followed by a slower late phase (VL). In fibers with endogenous sTnC, both VE and VL varied with [Ca2+], but VE was less affected than VL. Similar results were obtained after extraction of TnC and reconstitution with either sTnC or cTnC, except for a small increase in the apparent activation dependence of VE. Partial activation with aTnC was obtained by fully extracting endogenous sTnC followed by reconstitution with a mixture of aTnC and cTnC (aTnC:cTnC molar ratio 1:8.5). At pCa 9.2, VE and VL were similar to those obtained in fibers reconstituted with sTnC or cTnC at equivalent force levels. In these fibers, which contained aTnC and cTnC, VE and VL increased with isometric force when [Ca2+] was increased from pCa 9.2 to 4.0. Fibers that contained a mixture of a TnC and cTnC were then extracted a second time to selectively remove cTnC. In fibers containing aTnC only, VE and VL were proportional to the resulting submaximal isometric force compared with maximum Ca(2+)-activated control. With aTnC alone, force, VE, and VL were not affected by changes in [Ca2+]. The similarity of activation dependence of VUS whether fibers were activated in a Ca(2+)-sensitive or -insensitive manners implies that VUS is determined by the average level of thin filament activation and that, with sTnC or cTnC, VUS is affected by Ca2+ binding to TnC only.


Advances in Experimental Medicine and Biology | 1998

Skeletal muscle regulatory proteins enhance F-actin in vitro motility.

Albert M. Gordon; Yuhchyau Chen; B. Liang; M.A. LaMadrid; Zhaoxiong Luo; P.B. Chase

Using an in vitro motility assay, we have investigated the effects of rabbit skeletal muscle regulatory proteins, troponin and tropomyosin, on the gliding of F-actin filaments or F-actin filaments containing these regulatory proteins. We demonstrate that Ca2+ does not affect the motility of F-actin gliding on HMM, but does in the presence of skeletal muscle tropomyosin and troponin. We conclude that Ca2+ affects motility through troponin because, like F-actin, F-actin-Tm filaments show no Ca(2+)-dependence to their gliding speeds. Furthermore, there is a large enhancement of the gliding speed (about 75%) in the presence of skeletal muscle tropomyosin, troponin + saturating Ca2+ over that seen with F-actin filaments. This enhancement is not due to the action of tropomyosin alone as skeletal muscle tropomyosin without troponin enhances the speed little (about 5%) over that of F-actin. Thus troponin confers Ca2+ sensitivity to the motility and, additionally, potentiates motility greatly along with tropomyosin in the presence of saturating Ca2+. When [HMM] is varied, the decline in speed of F-actin seen at low HMM density is changed little by tropomyosin in the F-actin-Tm filaments. These data show that the skeletal regulatory proteins interact with F-actin to enhance the interaction with HMM particularly in the presence of troponin and saturating Ca2+ and enhance the gliding speed in the in vitro motility assay as they potentiate the ATPase activity in the isolated proteins. This enhancement of speed in the motility assay cannot be ascribed to tropomyosin alone.


Biophysical Journal | 1993

Calcium-independent activation of skeletal muscle fibers by a modified form of cardiac troponin C.

J.D. Hannon; P.B. Chase; Donald A. Martyn; Lee L. Huntsman; Martin J. Kushmerick; Albert M. Gordon

A conformational change accompanying Ca2+ binding to troponin C (TnC) constitutes the initial event in contractile regulation of vertebrate striated muscle. We replaced endogenous TnC in single skinned fibers from rabbit psoas muscle with a modified form of cardiac TnC (cTnC) which, unlike native cTnC, probably contains an intramolecular disulfide bond. We found that such activating TnC (aTnC) enables force generation and shortening in the absence of calcium. With aTnC, both force and shortening velocity were the same at pCa 9.2 and pCa 4.0. aTnc could not be extracted under conditions which resulted in extraction of endogenous TnC. Thus, aTnC provides a stable model for structural studies of a calcium binding protein in the active conformation as well as a useful tool for physiological studies on the primary and secondary effects of Ca2+ on the molecular kinetics of muscle contraction.

Collaboration


Dive into the P.B. Chase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.D. Hannon

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A. LaMadrid

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ying Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Zhaoxiong Luo

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge