Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Banković is active.

Publication


Featured researches published by P. Banković.


Journal of Hazardous Materials | 2011

Phenol determination on HDTMA-bentonite-based electrodes

Z. Mojović; N. Jović-Jovičić; A. Milutinović-Nikolić; P. Banković; A. Abu Rabi-Stanković; Dušan Jovanović

The partial and complete substitution of cations in the interlayer region of clay with different amounts of hexadecyl trimethylammonium bromide (HDTMABr) was performed. The aim was to synthesize organo-bentonites to be used as constituents of porous electrodes for the electrooxidation of phenol. Domestic clay from Bogovina was subjected to a common procedure of the production of organo-bentonites. It included the following steps: grinding, sieving, Na-exchange, cation exchange and drying. The samples were characterized by X-ray diffraction (XRD) analysis, while the textural properties were evaluated by nitrogen physisorption. The multisweep cyclic voltammetry was applied to analyze the behavior of the clay modified glassy carbon electrode. The influences of the surfactant loading and pH of the support electrolyte were investigated. Rapid deactivation of electrodes occurred in an acidic environment, while good stability of the investigated electrodes was obtained in alkaline medium.


Food Chemistry | 2015

Efficient stabilization of Saccharomyces cerevisiae external invertase by immobilisation on modified beidellite nanoclays.

Uroš Andjelković; A. Milutinović-Nikolić; N. Jović-Jovičić; P. Banković; Teja Bajt; Z. Mojović; Zoran Vujčić; Dušan Jovanović

The external invertase isoform 1 (EINV1) was immobilised on eight differently modified beidellite nanoclays. Modifications were composed of organo-modification with different amounts of surfactant - hexadecyl trimethylammonium cation (HDTMA), pillaring with Al/Fe containing polyhydroxy cations and acid modification of Na-enriched and pillared clays. The modified nanoclays were characterised by XRD, N2-physisorption, SEM and FT-IR spectroscopy. The amount of bound enzyme activity was significantly influenced by the modification of beidellite ranging from 50 to remarkable 2200U/g. Biochemical characterization was performed for five modified nanoclays showing the highest enzyme activity after invertase immobilisation. The investigation demonstrated that after immobilisation the structure and the catalytic properties of invertase were preserved, while Km values were slightly increased from 26 to 37mM. immobilisation significantly improved thermal and storage stability of EINV1. Results indicate that beidellite nanoclays obtained by low cost modifications can be applied as a suitable support for the immobilisation of invertase. The immobilizate can be efficiently engaged in sucrose hydrolysis in batch reactor.


Journal of Contaminant Hydrology | 2013

Synergic adsorption of Pb2+ and reactive dye--RB5 on two series of organomodified bentonites.

N. Jović-Jovičić; A. Milutinović-Nikolić; M. Žunić; Z. Mojović; P. Banković; Ivan Gržetić; Dušan Jovanović

Two series of organobentonites (OBs) were synthesized from Na(+)-exchanged bentonite clay from Bogovina, Serbia. In the first series the starting material was modified using hexadecyltrimethylammonium (HDTMA(+)) ion in the amounts corresponding to 0.2, 0.5, 1.0 and 2.0 of the CEC value. The second series was obtained using quaternary alkyl ammonium cations (QAACs) with different alkyl chain lengths: hexadecyltrimethylammonium (HDTMA(+)), dodecyltrimethylammonium (DDTMA(+)) and tetramethylammonium (TMA(+)) ions. The synthesized OBs were characterized. The adsorption of anionic reactive dye Reactive Black 5 (RB5) and Pb(2+) from single component solutions and their bi-component solution was investigated for both series of OBs. The adsorptive properties of the OBs were correlated to the amount and type of incorporated QAACs. The correlation was tested using different mathematical models and best fits were found. Experimental results showed that simultaneous adsorption of RB5 and Pb(2+) exhibited synergic effect. The adsorption capacity for both RB5 and Pb(2+) was higher in their bi-component solution than in single-component solutions. These results indicate the creation of new adsorption sites during the simultaneous adsorption.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2011

Influence of process parameters on the photodegradation of synthesized azo pyridone dye in TiO2 water suspension under simulated sunlight

Jasmina Dostanić; Davor Lončarević; P. Banković; Olga G. Cvetković; Dušan Jovanović; Dušan Ž. Mijin

Photocatalytic degradation of synthesized azo pyridone dye (5-(4-sulpho phenylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridone), in aqueous solutions by simulated sunlight in the presence of commercial TiO2, Aeroxide P25, was studied. The reaction kinetics analysis showed that photodegradation exhibits pseudo first-order kinetics according to Langmuir-Hinshelwood model. The effects of various process parameters on the photocatalytic degradation were investigated. The optimal catalyst content and pH were determined. A decrease in the reaction rate was observed upon the increase of the initial dye concentration. Degradation of the dye was enhanced by hydrogen peroxide, but it was inhibited by ethanol. The influence of temperature was studied, and the energy of activation was determined. According to total organic carbon (TOC) analysis, 54% of TOC remained when 100% of the dye was decolorized. Although the intermediates were not determined in this study, the TOC results clearly indicate their presence during the reaction. In addition, photocatalytic degradation of simulated dyehouse effluents, containing tested azo pyridone dye and associated auxiliary chemicals was investigated.


Chinese Journal of Catalysis | 2009

Toluene Degradation in Water Using AlFe-Pillared Clay Catalysts

P. Banković; A. Milutinović-Nikolić; Z. Mojović; Aleksandra Rosić; Željko Čupić; Davor Lončarević; Dušan Jovanović

Abstract The catalytic wet peroxide oxidation (CWPO) of toluene on two bentonite-based AlFe-pillared clays (PILCs) with different iron contents was investigated. The PILCs were obtained using bentonite clay from Bogovina, Serbia. The change in chemical and phase composition and textural properties of the starting clay and synthesized catalysts was monitored using X-ray diffraction, inductively coupled plasma optical emission spectrometry, UV-Vis diffuse reflectance spectrometry, and physisorption of nitrogen. The catalytic performance was examined using gas chromatography. The Na-exchange process lowered the (001) smectite basal plane spacing, but the clay retained its swelling properties, while the pillaring process increased it. The surface areas of both synthesized pillared clays increased to values although their Fecontent was different. At 37 °C, both catalysts show significant toluene degradation, with the one richer in Fe having higher efficiency. The leaching of the active cations during reaction was negligible, and the catalysts were stable. AlFe-pillared clay catalysts can be used in CWPO for the elimination of BTEX compounds from plant effluent streams.


Clays and Clay Minerals | 2012

p-NITROPHENOL ELECTRO-OXIDATION ON A BTMA+-BENTONITE-MODIFIED ELECTRODE

A. Abu Rabi-Stanković; A. Milutinović-Nikolić; N. Jović-Jovičić; P. Banković; M. Žunić; Z. Mojović; Dušan Jovanović

Phenol and its derivatives are regarded as ‘priority pollutants’ and p-nitrophenol (p-NP), in particular, is of great interest due to its toxicity and frequent presence in waste waters and fresh waters. Straightforward, inexpensive methods to identify p-NP in water, however, is lacking. In the present study, an electrochemical technique using clay-modified electrodes to measure p-NP was investigated as a potentially promising method to fill that gap. A glassy carbon electrode (GCE) was modified with a thin layer of Na-enriched bentonite and a series of benzyltrimethylammonium (BTMA+)-bentonites (BTMA+-B) in order to confirm these materials as p-NP electrosensitive. A series of organobentonites was synthesized using different BTMA+/bentonite ratios. The materials obtained were characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and a low-temperature nitrogen adsorptiondesorption method. A monolayer arrangement of BTMA+ within the interlamellar region of beidellite-rich smectite was confirmed. Deterioration of the textural properties was observed with increase of BTMA+ loading. The electro-oxidation of p-NP in an acidic medium on BTMA+-B-modified GCE was investigated. The cyclic voltammetry method with a three-electrode cell was used. The reference electrode was Ag/AgCl in 3 M KCl and a Pt foil was the counter electrode. For each electrochemical measurement, a different BTMA+ loading in BTMA+-B was used as the material for GCE coating and applied as the working electrode. The electrochemical activity of BTMA+-B-based electrodes increased with BTMA+ loading. The results confirmed that the organophylic character of the BTMA+-B-modified surface was the main influence on the electrochemical activity of the BTMA+-B-based GCE; the influence of textural properties was almost negligible. The increased electrode activity toward p-NP was achieved by the adsorption of p-NP on the electrode surface, the process that commonly precedes the electro-oxidation. The present study showed that synthesized materials could potentially be used in an electrochemical test for the presence of p-NP in water solutions.


Russian Journal of Physical Chemistry A | 2007

Temperature dependence of catalytic cyclohexane partial oxidation in a polytetrafluoroethylene reactor

Davor Lončarević; Jugoslav Krstić; P. Banković; Slobodan Anić; Željko Čupić

Polymer-supported Co(II) catalyst was prepared and its activity and selectivity in the partial oxidation of cyclohexane was determined at several temperatures in a polytetrafluoroethylene reactor (PTFE). The catalyst was characterized by means of SEM-EDX, FTIR, diffuse reflectance UV-Vis, N2 sorption, and mecury porosimetry. Activation energies were determined under steady state conditions for the net production of cyclohexanone and cyclohexanol and for cyclohexane and oxygen net consumption. Some activation energies were lower than the ones reported for the uncatalyzed process, indicating that the catalyst played an important role in the initiation of the free-radical reaction.


International Journal of Modern Physics B | 2010

THE PARAMAGNETIC PILLARED BENTONITES AS DIGESTIVE TRACT MRI CONTRAST AGENTS

Miloš Mojović; Marko Daković; Mia Omerašević; Z. Mojović; P. Banković; A. Milutinović-Nikolić; Dušan Jovanović

The increased use of imaging techniques in diagnostic studies, such as MRI, has contributed to the development of the wide range of new materials which could be successfully used as image improving agents. However, there is a lack of such substances in the area of gastrointestinal tract MRI. Many of the traditionally popular relaxation altering agents show poor results and disadvantages provoking black bowel, side effects of diarrhea and the presence of artifacts arising from clumping. Paramagnetic species seem to be potentially suitable agents for these studies, but contrast opacification has been reported and less than 60% of the gastrointestinal tract magnetic resonance scans showed improved delineation of abdominal pathologies. The new solution has been proposed as zeolites or smectite clays (hectorite and montmorillonite) enclosing of paramagnetic metal ions obtained by ion-exchange methods. However, such materials have problems of leakage of paramagnetic ions causing the appearance of the various side-effects. In this study we show that Co+2 and Dy+3 paramagnetic-pillared bentonites could be successfully used as MRI digestive tract non-leaching contrast agents, altering the longitudinal and transverse relaxation times of fluids in contact with the clay minerals.


Hemijska Industrija | 2010

Modified bentonite as adsorbent and catalyst for purification of wastewaters containing dyes

M. Žunić; A. Milutinović-Nikolić; N. Jović-Jovičić; P. Banković; Z. Mojović; Dragan Manojlović; Dušan Jovanović

Modification and characterization of bentonite from location Bogovina, Serbia was performed in order to obtain material applicable in wastewater purification. The <75μm bentonite fraction was used in organobentonite synthesis while the <2μm bentonite fraction, obtained by hydroseparation was used in pillaring procedure. Organo-modification of bentonite was performed with (1-hexadecyl)trimethylammonium bromide (HDTMA-Br). Pillared bentonite was obtained using standard procedure. Al3+ and Fe3+ ions were incorporated in pillars in 4:1 ratio and applied as catalyst in catalytic wet peroxide oxidation. Differences in structure of starting and modified bentonites were established by XRD analysis and nitrogen physisorption on -196 °C. The (001) smectite peak around 2θ = 6° shifts during the modification process. The Na-exchange process lowered d001 from 1.53 nm (2θ = 5.78°) for starting clay to 1.28 nm (2θ = 6.92°), but the clay retained its swelling properties. The pillaring process increased and fixed the basal spacing to 1.74 nm. Intercalation of HDTMA ions into smectite structure increased d001 to 2.00 nm for organobentonite. Specific surface area, SBET, was affected by particle size and type of modification. The samples with finer bentonite fraction had higher SBET due to increased smectite content. Na-exchanged bentonite samples had higher SBET value than starting clay samples of same granulation. Organomodification caused dramatic decrease in SBET value, while the pillaring process lead to an increase of SBET value. Adsorptive and catalytic purification of wastewaters containing dyes was tested using Acid Yellow 99 as a model dye. Na-exchanged bentonite had greater adsorption affinity for dye adsorption than raw bentonite owing to higher SBET. By organomodification this affinity was enhanced more than 70 times due to transition of bentonite surface from hydrophilic to organophilic. Al,Fe pillared bentonite was proven to be efficient in catalytic wet peroxide oxidation of Acid Yellow 99 dye at room temperature.


Materials Science Forum | 2006

Hydrogenation of Soybean Oil over Ag-Ni/Diatomite Catalysts. Effect of Silver Content on the Cis/Trans Isomerization Selectivity

Miroslav Stanković; P. Banković; B. Marković; Zorica M. Vuković; Dušan Jovanović

Silver promoted nickel catalysts supported on diatomite were prepared by precipitation method. Characterization of the catalysts prepared with different silver contents (0.1-4.0 wt%) included AAS, XRD, Hg porosimetry, BET and H2 chemisorption measurements. The catalytic activity and selectivity were tested by soybean oil (SBO) hydrogenation under pressure of hydrogen of 0.16 MPa at 160 °C. Fatty acids (FA) contained in hydrogenated SBO were analysed by gas chromatography. Trans fatty acid (TFA) content in hydrogenated SBO varied considerably depending of the silver content in prepared catalysts.

Collaboration


Dive into the P. Banković's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. Mojović

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Žunić

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge