Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Bryant Chase is active.

Publication


Featured researches published by P. Bryant Chase.


Biophysical Journal | 1998

Compliant Realignment of Binding Sites in Muscle: Transient Behavior and Mechanical Tuning

Thomas L. Daniel; Alan C. Trimble; P. Bryant Chase

The presence of compliance in the lattice of filaments in muscle raises a number of concerns about how one accounts for force generation in the context of the cross-bridge cycle--binding site motions and coupling between cross-bridges confound more traditional analyses. To explore these issues, we developed a spatially explicit, mechanochemical model of skeletal muscle contraction. With a simple three-state model of the cross-bridge cycle, we used a Monte Carlo simulation to compute the instantaneous balance of forces throughout the filament lattice, accounting for both thin and thick filament distortions in response to cross-bridge forces. This approach is compared to more traditional mass action kinetic models (in the form of coupled partial differential equations) that assume filament inextensibility. We also monitored instantaneous force generation, ATP utilization, and the dynamics of the cross-bridge cycle in simulations of step changes in length and variations in shortening velocity. Three critical results emerge from our analyses: 1) there is a significant realignment of actin-binding sites in response to cross-bridge forces, 2) this realignment recruits additional cross-bridge binding, and 3) we predict mechanical behaviors that are consistent with experimental results for velocity and length transients. Binding site realignment depends on the relative compliance of the filament lattice and cross-bridges, and within the measured range of these parameters, gives rise to a sharply tuned peak for force generation. Such mechanical tuning at the molecular level is the result of mechanical coupling between individual cross-bridges, mediated by thick filament deformations, and the resultant realignment of binding sites on the thin filament.


BMC Cell Biology | 2011

Age-related changes in rat bone-marrow mesenchymal stem cell plasticity

Faizal Z. Asumda; P. Bryant Chase

BackgroundThe efficacy of adult stem cells is known to be compromised as a function of age. This therefore raises questions about the effectiveness of autologous cell therapy in elderly patients.ResultsWe demonstrated that the expression profile of stemness markers was altered in BM-MSCs derived from old rats. BM-MSCs from young rats (4 months) expressed Oct-4, Sox-2 and NANOG, but we failed to detect Sox-2 and NANOG in BM-MSCs from older animals (15 months). Chondrogenic, osteogenic and adipogenic potential is compromised in old BM-MSCs. Stimulation with a cocktail mixture of bone morphogenetic protein (BMP-2), fibroblast growth factor (FGF-2) and insulin-like growth factor (IGF-1) induced cardiomyogenesis in young BM-MSCs but not old BM-MSCs. Significant differences in the expression of gap junction protein connexin-43 were observed between young and old BM-MSCs. Young and old BM-MSCs fused with neonatal ventricular cardiomyocytes in co-culture and expressed key cardiac transcription factors and structural proteins. Cells from old animals expressed significantly lower levels of VEGF, IGF, EGF, and G-CSF. Significantly higher levels of DNA double strand break marker γ-H2AX and diminished levels of telomerase activity were observed in old BM-MSCs.ConclusionThe results suggest age related differences in the differentiation capacity of BM-MSCs. These changes may affect the efficacy of BM-MSCs for use in stem cell therapy.


The Journal of Physiology | 2002

Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca2+ relations

Michael Regnier; Anthony J. Rivera; Chien-Kao Wang; Mandy A. Bates; P. Bryant Chase; Albert M. Gordon

The role of cooperative interactions between individual structural regulatory units (SUs) of thin filaments (7 actin monomers : 1 tropomyosin : 1 troponin complex) on steady‐state Ca2+‐activated force was studied. Native troponin C (TnC) was extracted from single, de‐membranated rabbit psoas fibres and replaced by mixtures of purified rabbit skeletal TnC (sTnC) and recombinant rabbit sTnC (D27A, D63A), which contains mutations that disrupt Ca2+ coordination at N‐terminal sites I and II (xxsTnC). Control experiments in fibres indicated that, in the absence of Ca2+, both sTnC and xxsTnC bind with similar apparent affinity to sTnC‐extracted thin filaments. Endogenous sTnC‐extracted fibres reconstituted with 100 % xxsTnC did not develop Ca2+‐activated force. In fibres reconstituted with mixtures of sTnC and xxsTnC, maximal Ca2+‐activated force increased in a greater than linear manner with the fraction of sTnC. This suggests that Ca2+ binding to functional Tn can spread activation beyond the seven actins of an SU into neighbouring units, and the data suggest that this functional unit (FU) size is up to 10–12 actins. As the number of FUs was decreased, Ca2+ sensitivity of force (pCa50) decreased proportionally. The slope of the force‐pCa relation (the Hill coefficient, nH) also decreased when the reconstitution mixture contained < 50 % sTnC. With 15 % sTnC in the reconstitution mixture, nH was reduced to 1.7 ± 0.2, compared with 3.8 ± 0.1 in fibres reconstituted with 100 % sTnC, indicating that most of the cooperative thin filament activation was eliminated. The results suggest that cooperative activation of skeletal muscle fibres occurs primarily through spread of activation to near‐neighbour FUs along the thin filament (via head‐to‐tail tropomyosin interactions).


Analytical Biochemistry | 1992

High-performance liquid chromatographic assays for free and phosphorylated derivatives of the creatine analogues β-guanidopropionic acid and 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine)

Robert W. Wiseman; Timothy S. Moerland; P. Bryant Chase; Rudolph Stuppard; Martin J. Kushmerick

Creatine and phosphocreatine are substrates for creatine kinase which is a key enzyme involved in energy transfer within the cell. Analogues of creatine have been fed to animals to determine the role this enzyme plays in energy metabolism, but progress in interpretation has been hampered by the lack of quantitative techniques to determine tissue content of these compounds. We describe the separation and quantitation of substituted guanidino compounds and their phosphorylated forms by high-performance liquid chromatography. First, a cation-exchange column is used to assay free creatine and its unphosphorylated analogues, and then phosphocreatine and its phosphorylated analogues as well as adenylate content (AMP, ADP, ATP) are assayed on an anion-exchange column. These methods have proven successful in measuring the chemical contents of these compounds in neutralized perchloric acid extracts of mammalian skeletal muscles. The sensitivity of this method ranges from 50 to 200 pmol, which is adequate to provide information from tissue extracts of 5- to 10-mg samples.


Biophysical Journal | 2011

Enhanced Active Cross-Bridges during Diastole: Molecular Pathogenesis of Tropomyosin's HCM Mutations

Fan Bai; Adam Weis; Aya K. Takeda; P. Bryant Chase; Masataka Kawai

Three HCM-causing tropomyosin (Tm) mutants (V95A, D175N, and E180G) were examined using the thin-filament extraction and reconstitution technique. The effects of Ca(2+), ATP, phosphate, and ADP concentrations on cross-bridge kinetics in myocardium reconstituted with each of these mutants were studied at 25°C, and compared to wild-type (WT) Tm at physiological ionic strength (200 mM). All three mutants showed significantly higher (2-3.5 fold) low Ca(2+) tension (T(LC)) and stiffness than WT at pCa 8.0. High Ca(2+) tension (T(HC)) was significantly higher for E180G than that for WT, whereas T(HC) of V95A and D175N was similar to WT; high Ca(2+) stiffness (Y(HC)) had the same trend. The Ca(2+) sensitivity of isometric force was significantly greater for V95A and E180G than for WT, whereas that of D175N remained the same as for WT; for all mutants, cooperativity was lower than for WT. Nine kinetic constants and the cross-bridge distribution were deduced using sinusoidal analysis. The number of force-generating cross bridges was similar among the D175N, E180G, and WT Tm forms, but it was significantly larger in the case of V95A than WT. We conclude that the increased number of actively cycling cross bridges at pCa 8 is the major cause of Tm mutation-related HCM pathogenesis, which may result in diastolic dysfunction. Decreased contractility (T(act)) in V95A and D175N may further contribute to the severity of myocyte hypertrophy and related prognosis of the disease.


Applied Physics Letters | 2004

All-electrical switching and control mechanism for actomyosin-powered nanoactuators

Goran Mihajlović; Nicolas M. Brunet; Jelena Trbovic; Peng Xiong; Stephan von Molnar; P. Bryant Chase

A fast all-electrical activation and control mechanism for biomolecular motor-powered nanoactuators has been developed. Rapid and reversible on–off control of actomyosin biomolecular motors was experimentally demonstrated using in vitro motility assays. The results show that the motility of the actin filaments can be cycled repeatedly by electrically controlled thermal activation in the temperature range from 10°C to 50°C without functional loss. The fast response of the filaments upon rapid temperature switching suggests that thermal activation provides an effective method for turning actomyosin-powered nanoactuators on and off.


Annals of Biomedical Engineering | 2004

A Spatially Explicit Nanomechanical Model of the Half-Sarcomere: Myofilament Compliance Affects Ca2+-Activation

P. Bryant Chase; J. Michael Macpherson; Thomas L. Daniel

The force exerted by skeletal muscle is modulated by compliance of tissues to which it is connected. Force of the muscle sarcomere is modulated by compliance of the myofilaments. We tested the hypothesis that myofilament compliance influences Ca2+ regulation of muscle by constructing a computational model of the muscle half sarcomere that includes compliance of the filaments as a variable. The biomechanical model consists of three half-filaments of myosin and 13 thin filaments. Initial spacing of motor domains of myosin on thick filaments and myosin-binding sites on thin filaments was taken to be that measured experimentally in unstrained filaments. Monte-Carlo simulations were used to determine transitions around a three-state cycle for each cross-bridge and between two-states for each thin filament regulatory unit. This multifilament model exhibited less “tuning” of maximum force than an earlier two-filament model. Significantly, both the apparent Ca2+-sensitivity and cooperativity of activation of steady-state isometric force were modulated by myofilament compliance. Activation-dependence of the kinetics of tension development was also modulated by filament compliance. Tuning in the full myofilament lattice appears to be more significant at submaximal levels of thin filament activation.


Journal of Muscle Research and Cell Motility | 1994

Activation dependence and kinetics of force and stiffness inhibition by aluminiofluoride, a slowly dissociating analogue of inorganic phosphate, in chemically skinned fibres from rabbit psoas muscle

P. Bryant Chase; Donald A. Martyn; James D. Hannon

SummaryTo examine the mechanism by which aluminiofluoride, a tightly binding analogue of inorganic phosphate, inhibits force in single, chemically skinned fibres from rabbit psoas muscle, we measured the Ca2+-dependence of the kinetics of inhibitor dissociation and the kinetics of actomyosin interactions when aluminiofluoride was bound to the crossbridges. The relation between stiffness and the speed of stretch during small amplitude ramp stretches (< 5 nm per h.s.) was used to characterize the kinetic properties of crossbridges attached to actin; sarcomere length was assessed with HeNe laser diffraction. During maximum Ca2+-activation at physiological ionic strength (pCa 4.0, 0.2 m Γ/2), stiffness exhibited a steep dependence on the rate of stretch; aluminiofluoride inhibition at pCa 4.0 (0.2 m Γ/2) resulted in an overall decrease in stiffness, with stiffness at high rates of stretch (103–104 nm per h.s. per s) being disproportionately reduced. Thus the slope of the stiffness-speed relation was reduced during aluminiofluoride inhibition of activated fibres. Relaxation of inhibited fibres (pCa 9.2, 0.2 m Γ/2) resulted in aluminiofluoride being ‘trapped’ and was accompanied by a further decrease in stiffness at all rates of stretch which was comparable to that found in control relaxed fibres. In relaxed, low ionic strength conditions (pCa 9.2, 0.02 m Γ/2) which promote weak crossbridge binding, stiffness at all rates of stretch was significantly inhibited by aluminiofluoride ‘trapped’ in the fibre. To determine the Ca2+-dependence of inhibitor dissociation, force was regulated independent of Ca2+ using an activating tropinin C (aTnC). Results obtained with aTnC-activated fibres confirmed that there is no absolute requirement for Ca2+ for recovery from force inhibition by inorganic phosphate analogues in skinned fibres; the only requirement is thin filament activation which enables active crossbridge cycling. These results indicate that aluminiofluoride preferentially inhibits rapid equilibrium or weak crossbridge attachment to actin, that aluminiofluoride-bound crossbridges attach tightly to the activated thin filament, and that, at maximal (or near-maximal) activation, crossbridge attachment to actin prior to inorganic phosphate analogue dissociation is the primary event regulated by Ca2+.


Differentiation | 2012

Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells

Faizal Z. Asumda; P. Bryant Chase

Nuclear actin - which is immunologically distinct from cytoplasmic actin - has been documented in a number of differentiated cell types, and cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) have been detected in association with nuclei of adult human cardiac myocytes. It is not known whether these and related proteins are present in undifferentiated stem cells, or when they appear in cardiomyogenic cells following differentiation. We first tested the hypothesis that nuclear actin and cardiac isoforms of troponin C (cTnC) and tropomyosin (cTm) are present along with cTnI and cTnT in nuclei of isolated, neonatal rat cardiomyocytes in culture. We also tested the hypothesis that of these five proteins, only actin is present in nuclei of multipotent, bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult rats in culture, but that cTnC, cTnI, cTnT and cTm appear early and uniquely following cardiomyogenic differentiation. Here we show that nuclear actin is present within nuclei of both ventricular cardiomyocytes and undifferentiated, multipotent BM-MSCs. We furthermore show that cTnC, cTnI, cTnT and cTm are not only present in myofilaments of ventricular cardiomyocytes in culture but are also within their nuclei; significantly, these four proteins appear between days 3 and 5 in both myofilaments and nuclei of BM-MSCs treated to differentiate into cardiomyogenic cells. These observations indicate that cardiac troponin and tropomyosin could have important cellular function(s) beyond Ca(2+)-regulation of contraction. While the roles of nuclear-associated actin, troponin subunits and tropomyosin in cardiomyocytes are not known, we anticipate that the BM-MSC culture system described here will be useful for elucidating their function(s), which likely involve cardiac-specific, Ca(2+)-dependent signaling in the nucleus.


Biophysical Journal | 2003

Ca2+ Regulation of Rabbit Skeletal Muscle Thin Filament Sliding: Role of Cross-Bridge Number

Bo Liang; Ying Chen; Chien-Kao Wang; Zhaoxiong Luo; Michael Regnier; Albert M. Gordon; P. Bryant Chase

We investigated how strong cross-bridge number affects sliding speed of regulated Ca(2+)-activated, thin filaments. First, using in vitro motility assays, sliding speed decreased nonlinearly with reduced density of heavy meromyosin (HMM) for regulated (and unregulated) F-actin at maximal Ca(2+). Second, we varied the number of Ca(2+)-activatable troponin complexes at maximal Ca(2+) using mixtures of recombinant rabbit skeletal troponin (WT sTn) and sTn containing sTnC(D27A,D63A), a mutant deficient in Ca(2+) binding at both N-terminal, low affinity Ca(2+)-binding sites (xxsTnC-sTn). Sliding speed decreased nonlinearly as the proportion of WT sTn decreased. Speed of regulated thin filaments varied with pCa when filaments contained WT sTn but filaments containing only xxsTnC-sTn did not move. pCa(50) decreased by 0.12-0.18 when either heavy meromyosin density was reduced to approximately 60% or the fraction of Ca(2+)-activatable regulatory units was reduced to approximately 33%. Third, we exchanged mixtures of sTnC and xxsTnC into single, permeabilized fibers from rabbit psoas. As the proportion of xxsTnC increased, unloaded shortening velocity decreased nonlinearly at maximal Ca(2+). These data are consistent with unloaded filament sliding speed being limited by the number of cycling cross-bridges so that maximal speed is attained with a critical, low level of actomyosin interactions.

Collaboration


Dive into the P. Bryant Chase's collaboration.

Top Co-Authors

Avatar

Peng Xiong

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Jose R. Pinto

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas M. Brunet

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Campion Loong

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge