P.C. Aikman
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P.C. Aikman.
Journal of Dairy Science | 2008
P.C. Aikman; C.K. Reynolds; D.E. Beever
Diet digestibility and rate of passage, eating and rumination behavior, dry matter intake (DMI), and lactation performance were compared in 6 Jersey and 6 Holstein multiparous cows. Cows were fed gestation diets according to body weight (BW) beginning 7 wk before expected calving and ad libitum amounts of a lactation diet postpartum. Diet digestibility and rate of passage were measured in 5-d periods at wk 5 prepartum and wk 6 and 14 of lactation. Eating and ruminating behavior was measured over 5-d periods at wk 5 and 2 prepartum and wk 2, 6, 10, and 14 of lactation. Milk yield and DMI were higher in Holsteins, but milk energy output per kilogram of metabolic BW (BW(0.75)) and intake capacity (DMI/kg of BW) did not differ between breeds. Holsteins spent longer ruminating per day compared with Jerseys, but daily eating time did not differ between breeds. Jerseys spent more time eating and ruminating per unit of ingested feed. The duration and number of meals consumed did not differ between breeds, but the meals consumed by Jerseys were distributed more evenly throughout each 24-h period, providing a more regular supply of feed to the rumen. Feed passed through the digestive tract more quickly in Jerseys compared with Holsteins, suggesting particle breakdown and rumen outflow were faster in Jerseys, but this may also reflect the relative size of their digestive tract. Neutral detergent fiber digestibility was greater in Jerseys, despite the shorter rumen retention time, but digestibility of dry matter, organic matter, starch, and N did not differ between breeds. Utilization of digested N for tissue retention was higher at wk 5 prepartum and lower at wk 14 of lactation in Jerseys. In contrast to numerous published studies, intake capacity of Jerseys was not higher than that of Holsteins, but in the present study, cows were selected on the basis of equal expected milk energy yield per kilogram of metabolic BW. Digestibility of neutral detergent fiber and rate of digesta passage were higher in Jerseys, probably as a consequence of increased mastication per unit of feed consumed in Jerseys and their smaller size.
Journal of Dairy Science | 2011
P.C. Aikman; P.H. Henning; D.J. Humphries; C.H. Horn
This study investigated the effect of using the lactate-utilizing bacterium Megasphaera elsdenii NCIMB 41125 as a probiotic supplement on rumen fermentation and pH in dairy cows in the immediate postcalving period. Fourteen multiparous rumen-fistulated Holstein cows, blocked according to 305-d milk yield in the previous lactation, were used in a randomized complete block design. From d 1 to 28 postcalving, cows were fed ad libitum a total mixed ration with a forage to concentrate ratio of 392:608 and a starch concentration of 299g/kg of dry matter. Treatments consisting of a minimum of 10(10) cfu of Megasphaera elsdenii NCIMB 41125 or autoclaved M. elsdenii (placebo) were administered via the rumen cannula on d 3 and 12 of lactation (n=7 per treatment). Mid-rumen pH was measured every 15min, and eating and ruminating behaviors were recorded for 24h on d 2, 4, 6, 8, 11, 13, 15, 17, 22, and 28. Rumen fluid for volatile fatty acid and lactic acid analysis was collected at 11 time points on each of d 2, 4, 6, 13, and 15. Yields of milk and milk protein and lactose were similar, but milk fat concentration tended to be higher in cows that received the placebo. Time spent eating and ruminating and dry matter intake were similar across treatments. Ruminal lactic acid concentrations were highly variable between animals, and no cases of clinical acidosis were observed. Both treatment groups had rumen pH <5.6 for more than 3h/d (a commonly used threshold to define subacute ruminal acidosis), but the length of time with rumen pH <5.6 was markedly reduced in the days immediately after dosing and fluctuated much less from day to day in cows that received M. elsdenii compared with those that received the placebo. Ruminal total volatile fatty acid concentrations were similar across treatments, but the acetate:propionate ratio tended to be smaller in cows that received M. elsdenii. Despite the lack of a measurable treatment effect on ruminal lactic acid concentration, supplementation of early lactation dairy cows with lactate-utilizing M. elsdenii altered the rumen fermentation patterns in favor of propionate, with potential benefits for energy balance and animal productivity.
Journal of Dairy Science | 2011
Ehsan Khafipour; J.C. Plaizier; P.C. Aikman; Denis O. Krause
Previous studies indicated that only subacute ruminal acidosis (SARA), induced by feeding a high-grain diet, is associated with an inflammatory response and increased abundance of Escherichia coli in the rumen. We hypothesized that ruminal E. coli in grain pellet-induced SARA carried virulence factors that potentially contribute to the immune activation during SARA. One hundred twenty-nine E. coli isolates were cultured from the rumens of 8 cows (4 animals per treatment) in which SARA had been nutritionally induced by feeding a high-grain diet (GPI-SARA) or a diet containing alfalfa pellets (API-SARA). The population structure of the E. coli was evaluated with the ABD genotyping system and repetitive sequence-based (rep)-PCR fingerprinting. Twenty-five virulence factors were evaluated with PCR. Escherichia coli numbers were higher in the GPI-SARA treatment than in the API-SARA treatment. The genetic structure of the E. coli was significantly different between SARA challenge models. Isolates from GPI-control (46%), API-control (70%), and API-SARA (53%) were closely related and fell into one cluster, whereas isolates from GPI-SARA (54%) grouped separately. The ABD typing indicated a shift from an A-type E. coli population to a B1-type population only due to GPI-SARA. Of the 25 virulence factors tested, curli fiber genes were highly associated with GPI. Curli fibers were first identified in E. coli mastitis isolates and are potent virulence factors that induce a range of immune responses. Results suggest that under low rumen pH conditions induced by a grain diet, there is a burst in the number of E. coli with virulence genes that can take advantage of these rumen conditions to trigger an inflammatory response.
Animal | 2009
Kirsty E. Kliem; P.C. Aikman; D.J. Humphries; R. Morgan; Kevin J. Shingfield; D.I. Givens
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet-genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.
Food Chemistry | 2013
D. Ian Givens; P.C. Aikman; Trevor Gibson; Ronald H. Brown
The A1 variant protein of the β-casein family has been implicated in various disease states although much evidence is weak or contradictory. The primary objective was to measure, for the first time, the proportions of the key β-casein variant proteins in UK retail milk over the course of one year. In total, 55 samples of semi-skimmed milk were purchased from five supermarkets over the course of a year and the proportions of the A1, A2, B and C casein variant proteins were measured, using high resolution HPLC-MS. The results showed that β-casein in UK retail milk comprises approximately 0.58, 0.31, 0.07 and 0.03 A2, A1, B and C protein variants, respectively. The proportion of A2 is higher than some early studies would predict although the reasons for this and any implications for health are unclear.
Journal of Dairy Science | 2003
C.K. Reynolds; P.C. Aikman; B. Lupoli; D.J. Humphries; D.E. Beever
Journal of Dairy Science | 2002
J.A. Benson; C.K. Reynolds; P.C. Aikman; B. Lupoli; D.E. Beever
Journal of Dairy Science | 2002
P.C. Aikman; C.K. Reynolds; D.J. Humphries; D.E. Beever; John C. MacRae
International Journal of Dairy Technology | 2012
Yingqun Nian; Bi Ye Chen; P.C. Aikman; Alistair S. Grandison; Mike Lewis
Livestock Science | 2006
P.C. Aikman; D.E. Beever; D.J. Humphries