Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Camus is active.

Publication


Featured researches published by P. Camus.


Astronomy and Astrophysics | 2010

Planck pre-launch status: The HFI instrument, from specification to actual performance

J.-M. Lamarre; Jean-Loup Puget; Peter A. R. Ade; F. R. Bouchet; G. Guyot; A. E. Lange; F. Pajot; A. Arondel; K. Benabed; J.-L. Beney; A. Benoit; J.-Ph. Bernard; R. S. Bhatia; Y. Blanc; J. J. Bock; E. Bréelle; T. Bradshaw; P. Camus; A. Catalano; J. Charra; M. Charra; S. Church; F. Couchot; A. Coulais; B. P. Crill; M. Crook; K. Dassas; P. de Bernardis; J. Delabrouille; P. de Marcillac

Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range. Aims: The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods: The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results: The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification.


Astronomy and Astrophysics | 2003

Cosmological constraints from Archeops

A. Benoit; Peter A. R. Ade; A. Amblard; R. Ansari; Eric Aubourg; S. Bargot; James G. Bartlett; J.-Ph. Bernard; R. S. Bhatia; A. Blanchard; J. J. Bock; A. Boscaleri; F. R. Bouchet; A. Bourrachot; P. Camus; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; O. Dore; M. Douspis; L. Dumoulin; X. Dupac; Ph. Filliatre; P. Fosalba; K. Ganga; F. Gannaway; B. Gautier; M. Giard; Y. Giraud-Héraud

We analyze the cosmological constraints that Archeops places on adiabatic cold dark matter models with passive power-law initial fluctuations. Because its angular power spectrum has small bins in l and large l coverage down to COBE scales, Archeops provides a precise determination of the first acoustic peak in terms of position at multipole l_peak=220 +- 6, height and width. An analysis of Archeops data in combination with other CMB datasets constrains the baryon content of the Universe, Omega(b)h^2 = 0.022 (+0.003,-0.004), compatible with Big-Bang nucleosynthesis and with a similar accuracy. Using cosmological priors obtainedfrom recent non-CMB data leads to yet tighter constraints on the total density, e.g. Omega(tot)=1.00 (+0.03,-0.02) using the HST determination of the Hubble constant. An excellent absolute calibration consistency is found between Archeops and other CMB experiments, as well as with the previously quoted best fit model.The spectral index n is measured to be 1.04 (+0.10,-0.12) when the optical depth to reionization, tau, is allowed to vary as a free parameter, and 0.96 (+0.03,-0.04) when tau is fixed to zero, both in good agreement with inflation.


Astronomy and Astrophysics | 2003

The cosmic microwave background anisotropy power spectrum measured by archeops

A. Benoit; Peter A. R. Ade; A. Amblard; R. Ansari; Eric Aubourg; S. Bargot; James G. Bartlett; J.-Ph. Bernard; R. S. Bhatia; A. Blanchard; J. J. Bock; A. Boscaleri; F. R. Bouchet; A. Bourrachot; P. Camus; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; O. Dore; M. Douspis; L. Dumoulin; X. Dupac; Ph. Filliatre; P. Fosalba; K. Ganga; F. Gannaway; B. Gautier; M. Giard; Y. Giraud-Héraud

We present a determination by the Archeops experiment of the angular power spectrum of the cosmic microwave background anisotropy in 16 bins over the multipole range l=15-350. Archeops was conceived as a precursor of the Planck HFI instrument by using the same optical design and the same technology for the detectors and their cooling. Archeops is a balloon-borne instrument consisting of a 1.5 m aperture diameter telescope and an array of 21 photometers maintained at ~100 mK that are operating in 4 frequency bands centered at 143, 217, 353 and 545 GHz. The data were taken during the Arctic night of February 7, 2002 after the instrument was launched by CNES from Esrange base (Sweden). The entire data cover ~ 30% of the sky.This first analysis was obtained with a small subset of the dataset using the most sensitive photometer in each CMB band (143 and 217 GHz) and 12.6% of the sky at galactic latitudes above 30 degrees where the foreground contamination is measured to be negligible. The large sky coverage and medium resolution (better than 15 arcminutes) provide for the first time a high signal-to-noise ratio determination of the power spectrum over angular scales that include both the first acoustic peak and scales probed by COBE/DMR. With a binning of Delta(l)=7 to 25 the error bars are dominated by sample variance for l below 200. A companion paper details the cosmological implications.


Astrophysical Journal Supplement Series | 2011

A Dual-band Millimeter-wave Kinetic Inductance Camera for the IRAM 30 m Telescope

A. Monfardini; A. Benoît; A. Bideaud; Loren J. Swenson; A. Cruciani; P. Camus; C. Hoffmann; F.-X. Desert; S. Doyle; Peter A. R. Ade; Philip Daniel Mauskopf; C. Tucker; M. Roesch; S. Leclercq; K. Schuster; A. Endo; A. Baryshev; J. J. A. Baselmans; L. Ferrari; S. J. C. Yates; O. Bourrion; J. F. Macías-Pérez; C. Vescovi; M. Calvo; C. Giordano

The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors are mounted in a custom dilution cryostat, with an operating temperature of ~70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 × 10–16 W Hz–1/2 (at 1 Hz) while under a background loading of approximately 4 pW pixel–1. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.


Astronomy and Astrophysics | 2004

First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops

A. Benoît; Peter A. R. Ade; A. Amblard; R. Ansari; Eric Aubourg; S. Bargot; J. G. Bartlett; J.-Ph. Bernard; R. S. Bhatia; A. Blanchard; J. J. Bock; A. Boscaleri; F. R. Bouchet; A. Bourrachot; P. Camus; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; O. Doré; M. Douspis; L. Dumoulin; X. Dupac; P. Filliatre; P. Fosalba; K. Ganga; F. Gannaway; B. Gautier; M. Giard; Y. Giraud-Heraud

We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon--borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 GHz and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I, Q, U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 microns). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100, 120] and [180, 200] deg. with a degree of polarization at the level of 4-5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10-20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.


Astronomy and Astrophysics | 2010

NIKA: A millimeter-wave kinetic inductance camera

A. Monfardini; L. J. Swenson; A. Bideaud; F.-X. Desert; S. J. C. Yates; A. Benoît; A. Baryshev; J. J. A. Baselmans; S. Doyle; B. Klein; M. Roesch; Carole Tucker; Peter A. R. Ade; M. Calvo; P. Camus; C. Giordano; Rolf Guesten; C. Hoffmann; S. Leclercq; Philip Daniel Mauskopf; K. Schuster

Context. Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. These instruments typically employ multiplexing ratios well below a hundred. To achieve multiplexing ratios greater than a thousand, it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). To assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the Neel IRAM KID Array (NIKA), it has recently been tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-m telescope at Pico Veleta, Spain. Aims. There were four principle research objectives: to determine the practicality of developing a giant array instrument based on KIDs, to measure current in-situ pixel sensitivities, to identify limiting noise sources, and to image both calibration and scientificallyrelevant astronomical sources. Methods. The detectors consisted of arrays of high-quality superconducting resonators electromagnetically coupled to a transmission line and operated at ∼100 mK. The impedance of the resonators was modulated by incident radiation; two separate arrays were tested to evaluate the efficiency of two unique optical-coupling strategies. The first array consisted of lumped element kinetic inductance detectors (LEKIDs), which have a fully planar design properly shaped to enable direct absorbtion. The second array consisted of antenna-coupled KIDs with individual sapphire microlenses aligned with planar slot antennas. Both detectors utilized a single transmission line along with suitable room-temperature digital electronics for continuous readout. Results. NIKA was successfully tested in October 2009, performing in line with expectations. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M 87 are presented. From these results, the optical NEP was calculated to be around 1×10 −15 W/Hz 1/2 . A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.


Astronomy and Astrophysics | 2005

Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops

N. Ponthieu; J. F. Macías-Pérez; M. Tristram; Peter A. R. Ade; A. Amblard; R. Ansari; J. Aumont; Eric Aubourg; A. Benoît; J.-Ph. Bernard; A. Blanchard; J. J. Bock; F. R. Bouchet; A. Bourrachot; P. Camus; J.-F. Cardoso; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; M. Douspis; L. Dumoulin; Ph. Filliatre; P. Fosalba; M. Giard; Y. Giraud-Heraud; R. Gispert; Julien Grain; L. Guglielmi; J.-Ch. Hamilton

We present the first measurement of temperature and polarization angular power spectra of the diffuse emission of Galactic dust at 353 GHz as seen by Archeops on 20% of the sky. The temperature angular power spectrum is compatible with that provided by the extrapolation to 353 GHz of IRAS and DIRBE maps using \cite{fds} model number 8. For Galactic latitudes


Astronomy and Astrophysics | 2005

The CMB temperature power spectrum from an improved analysis of the Archeops data

M. Tristram; G. Patanchon; J. F. Macías-Pérez; Peter A. R. Ade; A. Amblard; R. Ansari; É. Aubourg; A. Benoît; J.-Ph. Bernard; Alain Blanchard; J. J. Bock; F. R. Bouchet; A. Bourrachot; P. Camus; J.-F. Cardoso; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; M. Douspis; L. Dumoulin; Ph. Filliatre; P. Fosalba; M. Giard; Y. Giraud-Héraud; R. Gispert; L. Guglielmi; J.-Ch. Hamilton; Shaul Hanany; S. Henrot-Versillé

|b| \geq 5


Journal of Cosmology and Astroparticle Physics | 2013

Axion searches with the EDELWEISS-II experiment

E. Armengaud; Q. Arnaud; C. Augier; A. Benoit; L. Bergé; T. Bergmann; J. Blümer; A. Broniatowski; V. Brudanin; P. Camus; A. Cazes; B. Censier; M. Chapellier; F. Charlieux; F. Couëdo; P. Coulter; G.A. Cox; T. de Boissière; M. De Jésus; Y. Dolgorouky; A.A. Drillien; L. Dumoulin; K. Eitel; D. Filosofov; N. Fourches; J. Gascon; G. Gerbier; M. Gros; L. Hehn; S. Henry

deg we report a 4 sigma detection of large scale (


Astronomy and Astrophysics | 2013

Improved mm-wave photometry for kinetic inductance detectors

M. Calvo; M. Roesch; F.-X. Desert; A. Monfardini; A. Benoît; P. Mauskopf; Peter A. R. Ade; N. Boudou; O. Bourrion; P. Camus; A. Cruciani; S. Doyle; C. Hoffmann; S. Leclercq; J. F. Macías-Pérez; N. Ponthieu; K. Schuster; Carole Tucker; C. Vescovi

3\leq \ell \leq 8

Collaboration


Dive into the P. Camus's collaboration.

Top Co-Authors

Avatar

A. Benoit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

K. Eitel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Dumoulin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Dumoulin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

F.-X. Desert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J. Blümer

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge