Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Chanphai is active.

Publication


Featured researches published by P. Chanphai.


RSC Advances | 2014

Microscopic and thermodynamic analysis of PEG–β-lactoglobulin interaction

L. Bekale; P. Chanphai; S. Sanyakamdhorn; D. Agudelo; H.A. Tajmir-Riahi

We report the binding of milk β-lactoglobulin (β-LG) with PEG-3000, PEG-6000 and methoxypoly(ethylene glycol) anthracene (mPEG-anthracene) in aqueous solution at pH 7.4, using multiple spectroscopic methods, thermodynamic analysis, transmission electron microscopy (TEM) and molecular modeling. Thermodynamic and spectroscopic analysis showed that polymers bind β-LG via van der Waals interactions, hydrogen bonding and hydrophobic interactions, with overall binding constants KPEG-3000–β-LG = 9.2 (±0.9) × 103 M−1, KPEG-6000–β-LG = 9.7 (±0.7) × 103 M−1 and KmPEG-anthracene–β-LG = 5.5 (±0.5) × 104 M−1. The binding affinity was mPEG-anthracene > PEG-6000 > PEG-3000. Transmission electron microscopy analysis showed significant changes in protein morphology as polymer–protein complexation occurred, with a major increase in the diameter of the protein aggregate. Modeling showed several hydrogen bonding systems between PEG and the different amino acid stabilized polymer–β-LG complexes. The free binding energy indicated that the interaction process is spontaneous at room temperature. Furthermore, mPEG-anthracene is a stronger protein binder than PEG-3000 and PEG-6000, due to its major hydrophobic characteristics.


Journal of Photochemistry and Photobiology B-biology | 2014

Trypsin inhibitor complexes with human and bovine serum albumins: TEM and spectroscopic analysis

C. Hebia; L. Bekale; P. Chanphai; J. Agbebavi; H.A. Tajmir-Riahi

We report the binding of trypsin inhibitor (TI) with human serum albumin (HSA) and bovine serum albumin (BSA) at physiological conditions, using FTIR, CD, UV-Visible spectroscopic methods and transmission electron microscopy (TEM). Structural analysis showed that trypsin inhibitor binds HSA and BSA via hydrophilic and hydrophobic contacts with overall binding constants of KTI-HSA=1.4 (±0.5)×10(4)M(-1) and KTI-BSA=1.1 (±0.4)×10(6)M(-1). Trypsin inhibitor complexation induces minor reduction of the protein α-helix and a major increase in β-sheet structure. TEM images show that trypsin inhibitor complex formation leads to the protein aggregation and fibrillation.


Methods of Molecular Biology | 2014

Applications of Chitosan Nanoparticles in Drug Delivery

H.A. Tajmir-Riahi; Sh. Nafisi; S. Sanyakamdhorn; D. Agudelo; P. Chanphai

We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug-polymer complexes. Drug-chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD.


Journal of Photochemistry and Photobiology B-biology | 2016

Review on the delivery of steroids by carrier proteins.

P. Chanphai; A.R. Vesper; J. Bariyanga; Gervais Bérubé; H.A. Tajmir-Riahi

Due to the poor solubility of steroids in aqueous solution, delivery of these biomaterials is of major biomedical importance. We have reviewed the conjugation of testosterone and it aliphatic dimer and aromatic dimer with several carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were compared here. Steroid-protein bindings are via hydrophilic and H-bonding contacts. HSA forms more stable conjugate than BSA and b-LG. The stability of steroid-protein conjugates is testosterone>dimer-aromatic>dimer-aliphatic. Encapsulation of steroids by protein is shown by TEM images. Modeling showed the presence of H-bonding, which stabilized testosterone-protein complexes with the free binding energy of -12.95 for HSA and -11.55 for BSA and -8.92kcal/mol for b-LG conjugates. Steroid conjugation induced major perturbations of serum protein conformations. Serum proteins can transport steroids to the target molecules.


International Journal of Biological Macromolecules | 2016

Conjugation of biogenic and synthetic polyamines with serum proteins: A comprehensive review

P. Chanphai; T. J. Thomas; H.A. Tajmir-Riahi

We have reviewed the conjugation of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. The results of multiple spectroscopic methods and molecular modeling were analysed here and correlations between polyamine binding mode and protein structural changes were estabilished. Polyamine-protein bindings are mainly via hydrophilic and H-bonding contacts. BSA forms more stable conjugates than HSA and b-LG. Biogenic polyamines form more stable complexes than synthetic polyamines except in the case of b-LG, where the protein shows more hydrophobic character than HSA and BSA. The loading efficacies were 40-52%. Modeling showed the presence of several H-bonding systems, which stabilized polyamine-protein conjugates. Polyamine conjugation induced major alterations of serum protein conformations. The potential application of serum proteins in delivery of polyamines is evaluated here.


Journal of Photochemistry and Photobiology B-biology | 2014

Encapsulation of biogenic and synthetic polyamines by nanoparticles PEG and mPEG-anthracene.

S. Sanyakamdhorn; P. Chanphai; H.A. Tajmir-Riahi

Synthetic polymers play a major role in drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane⋅4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane⋅5HCl (BE-3333) with poly(ethylene glycol) PEG-3000, PEG-8000 and methoxy poly(ethylene glycol) anthracene (PEG-anthracene). Fourier transform infrared (FTIR), UV-visible and fluorescence spectroscopic were used to analyze polyamine binding mode, the binding constant and the effect of PEG compositions on polyamine-polymer interaction. Structural analysis showed that polyamines bind PEG through hydrophobic and hydrophilic contacts with overall binding constants of Kspm-PEG-3000=3.1×10(4)M(-1), Kspmd-PEG-3000=5.5×10(4)M(-1), KBE-333-PEG-3000=2.5×10(4)M(-1), KBE-3333-PEG-3000=1.5×10(5)M(-1), Kspm-PEG-8000=4.1×10(5)M(-1), Kspmd-PEG-8000=7.5×10(5)M(-1), KBE-333-PEG-8000=4.5×10(4)M(-1), KBE-3333-PEG-8000=2.2×10(5)M(-1), Kspm-mPEG-ant=6.5×10(5)M(-1), Kspmd-mPEG-ant=1.1×10(6)M(-1), KBE-333-mPEG-ant=2.2×10(5)M(-1) and KBE-3333-mPEG-ant=6.9×10(4)M(-1). The number of binding sites (n) occupied by polyamines were from 0.2 to 0.5. Biogenic polyamines showed stronger affinity toward polymer complexation than synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. Our results suggest that PEG and its derivative can act as carriers for delivering antitumor polyamine analogues to target tissues.


Colloids and Surfaces B: Biointerfaces | 2017

Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis.

P. Chanphai; E. Froehlich; J.S. Mandeville; H.A. Tajmir-Riahi

PAMAM dendrimers form strong protein conjugates that are used in drug delivery systems. We report the thermodynamic and binding analysis of polyamidoamine (PAMAM-G4) conjugation with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in PAMAM-protein interactions with more hydrophobic b-LG forming stronger polymer-protein conjugates. Thermodynamic parameters showed PAMAM-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der waals and H-bonding interactions prevail in HSA and BSA-polymer conjugates. The protein loading efficacy was 45-55%. PAMAM complexation induced major alterations of protein conformation. TEM images show major polymer morphological changes upon protein conjugation.


Journal of Photochemistry and Photobiology B-biology | 2015

Transporting testosterone and its dimers by serum proteins.

P. Chanphai; A.R. Vesper; L. Bekale; Gervais Bérubé; H.A. Tajmir-Riahi

A substantial part of steroids is bound to serum proteins in vivo. We report the association of testosterone and it aliphatic dimer (alip) and aromatic dimer (arom) with human serum albumin (HSA) and bovine serum albumin (BSA) in aqueous solution at physiological pH. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize steroid-protein binding and protein aggregation process. Spectroscopic analysis showed that steroids bind protein via hydrophobic, hydrophilic and H-bonding interactions. HSA forms more stable complexes than BSA. The binding affinity of steroid-protein adducts is testosterone>dimer-aromatic>dimer-aliphatic. Transmission electron microscopy showed major changes in protein morphology as steroid-protein complexation occurred with increase in the diameter of the protein aggregate indicating encapsulation of steroids by serum proteins. Modeling showed the presence of H-bonding stabilized testosterone-protein complexes with the free binding energy of -12.95 for HSA and -11.55 kcal/mol for BSA, indicating that the interaction process is spontaneous at room temperature. Steroid complexation induced more perturbations of BSA conformation than HSA.


Journal of Biomolecular Structure & Dynamics | 2018

Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology

P. Chanphai; H.A. Tajmir-Riahi

We report the loading efficacy of folic acid (FA) by polyamidoamine (PAMAM-G3 and PAMAM-G4) nanoparticles in aqueous solution at physiological pH. Thermodynamic parameters ΔH = −47.57 (kJ Mol−1), ΔS = −122.78 (J Mol−1, K−1) and ΔG = −10.96 (kJ Mol−1) showed FA-PAMAM bindings occur via H-bonding and van der Waals contacts. The stability of acid-PAMAM conjugate increased as polymer size increased. The acid loading efficacy was 40 to 50%. TEM images exhibited major polymer morphological changes upon acid encapsulation. PAMAM dendrimers are capable of FA delivery in vitro.


International Journal of Biological Macromolecules | 2017

Effect of testosterone and its aliphatic and aromatic dimers on DNA morphology.

P. Chanphai; D. Agudelo; A.R. Vesper; Gervais Bérubé; H.A. Tajmir-Riahi

Conjugation of DNA with testosterone and it aliphatic dimer (alip) and aromatic dimer (arom) was investigated in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize steroid-DNA binding and DNA morphology. Spectroscopic analysis showed that testosterone binds DNA via A7, A16, A17, T8, T15 and T18 nucleobases with overall binding constants Ktest-DNA=1.8 (±0.4)×104M-1, Ktest-dimeralip-DNA=5.7 (±0.7)×104M-1 and Ktest-dimer-arom-DNA=7.3 (±0.9)×104M-1. The binding affinity increases in this order: testosterone dimer-aromatic>testosterone dimer-aliphatic>testosterone. The steroid loading efficacy was 40-50%. Transmission electron microscopy showed major changes in DNA morphology as testosterone-DNA interaction occurred with increase in the diameter of the DNA aggregate, indicating encapsulation of testosterone by DNA. Modeling showed the presence of several nucleobases attached to testosterone with the free binding energy of -4.93Kcal/mol.

Collaboration


Dive into the P. Chanphai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Bekale

Université du Québec

View shared research outputs
Top Co-Authors

Avatar

A.R. Vesper

Université du Québec

View shared research outputs
Top Co-Authors

Avatar

D. Agudelo

Université du Québec

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Hebia

Université du Québec

View shared research outputs
Researchain Logo
Decentralizing Knowledge