Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Ciais is active.

Publication


Featured researches published by P. Ciais.


Global Biogeochemical Cycles | 2006

TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003

D. F. Baker; R. M. Law; Kevin Robert Gurney; P. J. Rayner; Philippe Peylin; A. S. Denning; P. Bousquet; Lori Bruhwiler; Yu-Han Chen; P. Ciais; Inez Y. Fung; Martin Heimann; Jasmin G. John; Takashi Maki; Shamil Maksyutov; Kenneth A. Masarie; Michael J. Prather; Bernard Pak; Shoichi Taguchi; Zhengxin Zhu

Monthly CO2 fluxes are estimated across 1988–2003 for 22 emission regions using data from 78 CO2 measurement sites. The same inversion (method, priors, data) is performed with 13 different atmospheric transport models, and the spread in the results is taken as a measure of transport model error. Interannual variability (IAV) in the winds is not modeled, so any IAV in the measurements is attributed to IAV in the fluxes. When both this transport error and the random estimation errors are considered, the flux IAV obtained is statistically significant at P ≤ 0.05 when the fluxes are grouped into land and ocean components for three broad latitude bands, but is much less so when grouped into continents and basins. The transport errors have the largest impact in the extratropical northern latitudes. A third of the 22 emission regions have significant IAV, including the Tropical East Pacific (with physically plausible uptake/release across the 1997–2000 El Nino/La Nina) and Tropical Asia (with strong release in 1997/1998 coinciding with large-scale fires there). Most of the global IAV is attributed robustly to the tropical/southern land biosphere, including both the large release during the 1997/1998 El Nino and the post-Pinatubo uptake.


Geophysical Research Letters | 2009

Bridging the gap between atmospheric concentrations and local ecosystem measurements.

Thomas Lauvaux; Beniamino Gioli; C. Sarrat; P. J. Rayner; P. Ciais; F. Chevallier; J. Noilhan; F. Miglietta; Y. Brunet; Eric Ceschia; Han Dolman; J.A. Elbers; Christoph Gerbig; Ronald W. A. Hutjes; N. Jarosz; D. Legain; Marek Uliasz

This paper demonstrates that atmospheric inversions of CO2 are a reliable tool for estimating regional fluxes. We compare results of an inversion over 18 days and a 300 × 300 km2 domain in southwest France against independent measurements of fluxes from aircraft and towers. The inversion used concentration measurements from 2 towers while the independent data included 27 aircraft transects and 5 flux towers. The inversion reduces the mismatch between prior and independent fluxes, improving both spatial and temporal structures. The present mesoscale atmospheric inversion improves by 30% the CO2 fluxes over distances of few hundreds of km around the atmospheric measurement locations


Journal of Geophysical Research | 2005

Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data

F. Chevallier; M. Fisher; Philippe Peylin; P. Bousquet; F.-M. Breon; A. Chédin; P. Ciais

Properly handling satellite data to constrain the inversion of CO2 sources and sinks at the Earth surface is a challenge motivated by the limitations of the current surface observation network. In this paper we present a Bayesian inference scheme to tackle this issue. It is based on the same theoretical principles as most inversions of the flask network but uses a variational formulation rather than a pure matrix-based one in order to cope with the large amount of satellite data. The minimization algorithm iteratively computes the optimum solution to the inference problem as well as an estimation of its error characteristics and some quantitative measures of the observation information content. A global climate model, guided by analyzed winds, provides information about the atmospheric transport to the inversion scheme. A surface flux climatology regularizes the inference problem. This new system has been applied to 1 years worth of retrievals of vertically integrated CO2 concentrations from the Television Infrared Observation Satellite Operational Vertical Sounder (TOVS). Consistent with a recent study that identified regional biases in the TOVS retrievals, the inferred fluxes are not useful for biogeochemical analyses. In addition to the detrimental impact of these biases, we find a sensitivity of the results to the formulation of the prior uncertainty and to the accuracy of the transport model. Notwithstanding these difficulties, four-dimensional inversion schemes of the type presented here could form the basis of multisensor data assimilation systems for the estimation of the surface fluxes of key atmospheric compounds.


Climate Dynamics | 2013

Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3

E. Joetzjer; H. Douville; C. Delire; P. Ciais

The present study aims at evaluating and comparing precipitation over the Amazon in two sets of historical and future climate simulations based on phase 3 (CMIP3) and 5 (CMIP5) of the Coupled Model Intercomparison Project. Thirteen models have been selected in order to discuss (1) potential improvements in the simulation of present-day climate and (2) the potential reduction in the uncertainties of the model response to increasing concentrations of greenhouse gases. While several features of present-day precipitation—including annual cycle, spatial distribution and co variability with tropical sea surface temperature (SST)—have been improved, strong uncertainties remain in the climate projections. A closer comparison between CMIP5 and CMIP3 highlights a weaker consensus on increased precipitation during the wet season, but a stronger consensus on a drying and lengthening of the dry season. The latter response is related to a northward shift of the boreal summer intertropical convergence zone in CMIP5, in line with a more asymmetric warming between the northern and southern hemispheres. The large uncertainties that persist in the rainfall response arise from contrasted anomalies in both moisture convergence and evapotranspiration. They might be related to the diverse response of tropical SST and ENSO (El Niño Southern Oscillation) variability, as well as to spurious behaviours among the models that show the most extreme response. Model improvements of present-day climate do not necessarily translate into more reliable projections and further efforts are needed for constraining the pattern of the SST response and the soil moisture feedback in global climate scenarios.


Journal of Geophysical Research | 1999

Inverse modeling of annual atmospheric CO2 sources and sinks. 2. Sensitivity study

P. Bousquet; Philippe Peylin; P. Ciais; M. Ramonet; Patrick Monfray

Atmospheric transport models can be used to infer surface fluxes of atmospheric CO 2 from observed concentrations using inverse methods. One of the main problem of these methods is the question of their sensivity to all the parameters involved in the calculation. In this paper we study precisely the influence of the main parameters on the net CO 2 fluxes inferred by an annual Bayesian three-dimensional (3-D) inversion of atmospheric CO 2 monthly concentrations. This inversion is described as the control inversion (S 0 ) of Bousquet et al. [this issue]. Successively, at regional to global spatial scales we analyze the numerical stability of the solution to initial fluxes and errors, the influence of a priori flux scenario, the sensitivity to the atmospheric transport model used, the influence of δ 13 C measurements, and the influence of the atmospheric network. We find that the atmospheric transport model introduces a large uncertainty to the inferred budget, which overcomes our control run uncertainties. The effects of vertical transport on CO 2 concentrations appear to be a critical point that has to be investigated further. Spatial patterns of fluxes also have significant influence on a regional basis. We notice that accounting for the Baltic Sea station (BAL) deeply modifies the Europe versus Asia partition of the land uptake at mid and high latitudes of the Northern Hemisphere. We also analyze the weak influence of using δ 13 C measurements as additional constraints. In the tropics we find that the low level of constraints imposed by the atmospheric network limits the analysis of fluxes to zonal means. Finally, we calculate overall estimates of CO 2 net sources and sinks at continental scale, accounting for all sensivity tests. Concerning the controversial partition of CO 2 sink at mid and high latitudes of the Northern Hemisphere, we find (on average, for the 1985-1995 period) an overall partition of the sink of 0.7±0.7 Gt C yr -1 for North America, 0.2±0.3 Gt C yr -1 for the North Pacific Ocean, 0.5±0.8 Gt C yr -1 for Europe, 0.7±0.3 Gt C yr -1 for the North Atlantic Ocean, and 1.2±0.8 Gt C yr -1 for north Asia. This overall partition tends to place an important land uptake over north Asia. However, uncertainties remain large when we account for all the sensitivity tests.


Tellus B | 2008

Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition

Dmitry Khvorostyanov; Gerhard Krinner; P. Ciais; Martin Heimann; Sergey Zimov

We constructed a new model to study the sensitivity of permafrost carbon stocks to future climate warming. The one-dimensional model solves an equation for diffusion of heat penetrating from the overlying atmosphere and takes into account additional in situ heat production by active soil microorganisms. Decomposition of frozen soil organic matter and produced CO2 and methane fluxes result from an interplay of soil heat conduction and phase transitions, respiration, methanogenesis and methanotrophy processes. Respiration and methanotrophy consume soil oxygen and thus can only develop in an aerated top-soil column. In contrast, methanogenesis is not limited by oxygen and can be sustained within the deep soil, releasing sufficient heat to further thawin depth the frozen carbon-rich soil organic matter. Heat production that accompanies decomposition and methanotrophy can be an essential process providing positive feedback to atmospheric warming through self-sustaining transformation of initially frozen soil carbon into CO2 and CH4. This supplementary heat becomes crucial, however, only under certain climate conditions. Oxygen limitation to soil respiration slows down the process, so that the mean flux of carbon released during the phase of intense decomposition is more than two times less than without oxygen limitation. Taking into account methanogenesis increases the mean carbon flux by 20%. Part II of this study deals with mobilization of frozen carbon stock in transient climate change scenarios with more elaborated methane module, which makes it possible to consider more general cases with various site configurations. Part I (this manuscript) studies mobilization of 400 GtC carbon stock of the Yedoma in response to a stepwise rapid warming focusing on the role of supplementary heat that is released to the soil during decomposition of organic matter.


Bulletin of the American Meteorological Society | 2006

The CarboEurope Regional Experiment Strategy

A. J. Dolman; J. Noilhan; P. Durand; C. Sarrat; A. Brut; B. Piguet; A. Butet; N. Jarosz; Y. Brunet; Denis Loustau; E. Lamaud; L. F. Tolk; R. Ronda; F. Miglietta; Beniamino Gioli; V. Magliulo; M. Esposito; Christoph Gerbig; S. Körner; P. Glademard; M. Ramonet; P. Ciais; B. Neininger; R. W. A. Hutjes; J.A. Elbers; R. Macatangay; O. Schrems; G. Pérez-Landa; M. J. Sanz; Y. Scholz

Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May?June 2005, to determine the variability in concentration gradients and fluxes of CO2. The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to concentration sample the CO2 and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns. Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.


Global Biogeochemical Cycles | 1999

A global calculation of the δ13C of soil respired carbon: Implications for the biospheric uptake of anthropogenic CO2

P. Ciais; Pierre Friedlingstein; David S. Schimel; Pieter P. Tans

The continuing emissions of fossil CO2 depleted in 13C have been causing a gradual decrease in atmospheric δ13C by roughly 1.4‰ since preindustrial times. The progressive penetration of this perturbation into the land biota causes the soil organic matter to be enriched in 13C with respect to recently formed plant material. This effect which we call the “biotic isotope disequilibrium” is important when it comes to deducing the terrestrial carbon fluxes by using δ13C in atmospheric CO2. We have estimated the geographical distribution of the isotopic disequilibrium, which is primarily influenced by the turnover of carbon in the various ecosystems, from the output of two biospheric models, (SLAVE and CENTURY). The disequilibrium is estimated to shift up the δ13C of atmospheric CO2 by the same amount as a net sink of 0.6 Gt C yr−1 in the land biota. This “fake” terrestrial sink due to the isotopic disequilibrium is distributed mainly in northern midlatitudes (0.2 Gt C yr−1) and tropical forests (0.3 Gt C yr−1).


Geophysical Research Letters | 2011

Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column

F. Chevallier; Nicholas M Deutscher; T. J. Conway; P. Ciais; L. Ciattaglia; S. Dohe; M. Fröhlich; Angel J. Gomez-Pelaez; David W. T. Griffith; F. Hase; L. Haszpra; P. B. Krummel; E. Kyrö; C. Labuschagne; R. L. Langenfelds; Toshinobu Machida; Fabienne Maignan; Hidekazu Matsueda; Isamu Morino; Justus Notholt; M. Ramonet; Yousuke Sawa; Martina Schmidt; Vanessa Sherlock; Paul Steele; Kimberly Strong; Ralf Sussmann; Paul O. Wennberg; S. C. Wofsy; Douglas E. J. Worthy

We present the first estimate of the global distribution of CO_2 surface fluxes from 14 stations of the Total Carbon Column Observing Network (TCCON). The evaluation of this inversion is based on 1) comparison with the fluxes from a classical inversion of surface air-sample-measurements, and 2) comparison of CO_2 mixing ratios calculated from the inverted fluxes with independent aircraft measurements made during the two years analyzed here, 2009 and 2010. The former test shows similar seasonal cycles in the northern hemisphere and consistent regional carbon budgets between inversions from the two datasets, even though the TCCON inversion appears to be less precise than the classical inversion. The latter test confirms that the TCCON inversion has improved the quality (i.e., reduced the uncertainty) of the surface fluxes compared to the assumed or prior fluxes. The consistency between the surface-air-sample-based and the TCCON-based inversions despite remaining flaws in transport models opens the possibility of increased accuracy and robustness of flux inversions based on the combination of both data sources and confirms the usefulness of space-borne monitoring of the CO_2 column.


Biogeosciences | 2012

The carbon budget of South Asia

Prabir K. Patra; Josep G. Canadell; R. A. Houghton; Shilong Piao; Neung-Hwan Oh; P. Ciais; K. R. Manjunath; A. Chhabra; Tao Wang; T. Bhattacharya; P. Bousquet; J. Hartman; Akihiko Ito; Emilio Mayorga; Yosuke Niwa; Peter A. Raymond; V. V. S. S. Sarma; R. Lasco

The source and sinks of carbon dioxide (CO 2 ) and methane (CH 4 ) due to anthropogenic and natural biospheric activities were estimated for the South Asian region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO 2 inversions, the net biospheric CO 2 flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr −1 during 2007–2008. Based on the bottom-up approach, the net biospheric CO 2 flux is estimated to be −191 ± 193 Tg C yr −1 during the period of 2000–2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr −1 (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr −1 , which resulted from a sink of −16 Tg C yr −1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr −1 due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr −1 ; and (4) the net CO 2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr −1 . Including the emissions from the combustion of fossil fuels of 444 Tg C yr −1 for the 2000s, we estimate a net CO 2 land–atmosphere flux of 297 Tg C yr −1 . In addition to CO 2 , a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH 4 . Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C yr −1 were released to atmosphere from South Asia during the 2000s. Taking all CO 2 and CH 4 fluxes together, our best estimate of the net land–atmosphere CO 2 -equivalent flux is a net source of 334 Tg C yr −1 for the South Asian region during the 2000s. If CH 4 emissions are weighted by radiative forcing of molecular CH 4 , the total CO 2 -equivalent flux increases to 1148 Tg C yr −1 suggesting there is great potential of reducing CH 4 emissions for stabilizing greenhouse gases concentrations.

Collaboration


Dive into the P. Ciais's collaboration.

Top Co-Authors

Avatar

Philippe Peylin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

F. Chevallier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Viovy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Ramonet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Dolman

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge