Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. de Bernardis is active.

Publication


Featured researches published by P. de Bernardis.


The Astrophysical Journal | 2000

MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5°

S. Hanany; Peter A. R. Ade; A. Balbi; J. J. Bock; J. Borrill; A. Boscaleri; P. de Bernardis; Pedro G. Ferreira; V. V. Hristov; A. H. Jaffe; A. E. Lange; A. T. Lee; Philip Daniel Mauskopf; C. B. Netterfield; S. Oh; Enzo Pascale; B. Rabii; P. L. Richards; George F. Smoot; R. Stompor; C. D. Winant; Jiun-Huei Proty Wu

We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 square degrees region of the sky with 10 arcminute resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions. Analysis of this CMB map yields a power spectrum for the CMB anisotropy over the range 36 < l < 785. The spectrum shows a peak with an amplitude of 78 +/- 6 micro-Kelvin at l ~ 220 and an amplitude varying between ~40 micro-Kelvin and ~50 micro-Kelvin for 400 < l < 785.


Physical Review Letters | 2001

Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR Cosmic Microwave Background Observations

A. H. Jaffe; Peter A. R. Ade; A. Balbi; J. J. Bock; J. R. Bond; J. Borrill; A. Boscaleri; K. Coble; B. P. Crill; P. de Bernardis; P. Farese; Pedro G. Ferreira; K. Ganga; M. Giacometti; Shaul Hanany; E. Hivon; V. V. Hristov; A. Iacoangeli; A. E. Lange; A. T. Lee; L. Martinis; S. Masi; Philip Daniel Mauskopf; Alessandro Melchiorri; T. E. Montroy; C. B. Netterfield; S. Oh; Enzo Pascale; F. Piacentini; Dmitry Pogosyan

Recent results from BOOMERANG-98 and MAXIMA-1, taken together with COBE DMR, provide consistent and high signal-to-noise measurements of the cosmic microwave background power spectrum at spherical harmonic multipole bands over 2<l less similar to 800. Analysis of the combined data yields 68% (95%) confidence limits on the total density, Omega(tot) approximately 1.11+/-0.07 (+0.13)(-0.12), the baryon density, Omega(b)h(2) approximately 0.032(+0.005)(-0.004) (+0.009)(-0.008), and the scalar spectral tilt, n(s) approximately 1.01(+0.09)(-0.07) (+0.17)(-0.14). These data are consistent with inflationary initial conditions for structure formation. Taken together with other cosmological observations, they imply the existence of both nonbaryonic dark matter and dark energy in the Universe.


The Astrophysical Journal | 2000

Constraints on Cosmological Parameters from MAXIMA-1

A. Balbi; Peter A. R. Ade; J. J. Bock; J. Borrill; A. Boscaleri; P. de Bernardis; Pedro G. Ferreira; Shaul Hanany; V. V. Hristov; A. H. Jaffe; A. T. Lee; S. Oh; Enzo Pascale; B. Rabii; P. L. Richards; George F. Smoot; R. Stompor; C. D. Winant; Jiun-Huei Proty Wu

We set new constraints on a seven-dimensional space of cosmological parameters within the class of inflationary adiabatic models. We use the angular power spectrum of the cosmic microwave background measured over a wide range of l in the first flight of the MAXIMA balloon-borne experiment (MAXIMA-1) and the low-l results from the COBE Differential Microwave Radiometer experiment. We find constraints on the total energy density of the universe, Ω = 1.0img1.gif, the physical density of baryons, Ωbh2 = 0.03 ± 0.01, the physical density of cold dark matter, Ωcdmh2 = 0.2img2.gif, and the spectral index of primordial scalar fluctuations, ns = 1.08 ± 0.1, all at the 95% confidence level. By combining our results with measurements of high-redshift supernovae we constrain the value of the cosmological constant and the fractional amount of pressureless matter in the universe to 0.45 < ΩΛ < 0.75 and 0.25 < Ωm < 0.50, at the 95% confidence level. Our results are consistent with a flat universe and the shape parameter deduced from large-scale structure, and in marginal agreement with the baryon density from big bang nucleosynthesis.


The Astrophysical Journal | 2002

Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology

P. de Bernardis; Peter A. R. Ade; J. J. Bock; J. R. Bond; J. Borrill; A. Boscaleri; K. Coble; C. R. Contaldi; B. P. Crill; G. De Troia; P. Farese; K. Ganga; M. Giacometti; E. Hivon; V. V. Hristov; A. Iacoangeli; A. H. Jaffe; W. C. Jones; A. E. Lange; L. Martinis; S. Masi; P. Mason; Philip Daniel Mauskopf; Alessandro Melchiorri; T. E. Montroy; C. B. Netterfield; Enzo Pascale; F. Piacentini; Dmitry Pogosyan; G. Polenta

Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology arXiv:astro-ph/0105296 v1 17 May 2001 P. de Bernardis 1 , P.A.R. Ade 2 , J.J. Bock 3 , J.R. Bond 4 , J. Borrill 5 , A. Boscaleri 6 , K. Coble 7 , C.R. Contaldi 4 , B.P. Crill 8 , G. De Troia 1 , P. Farese 7 , K. Ganga 9 , M. Giacometti 1 , E. Hivon 9 , V.V. Hristov 8 , A. Iacoangeli 1 , A.H. Jaffe 10 , W.C. Jones 8 , A.E. Lange 8 , L. Martinis 11 , S. Masi 1 , P. Mason 8 , P.D. Mauskopf 12 , A. Melchiorri 13 , T. Montroy 7 , C.B. Netterfield 14 , E. Pascale 6 , F. Piacentini 1 , D. Pogosyan 4 , G. Polenta 1 , F. Pongetti 15 , S. Prunet 4 , G. Romeo 15 , J.E. Ruhl 7 , F. Scaramuzzi 11 Dipartimento di Fisica, Universita’ La Sapienza, Roma, Italy Queen Mary and Westfield College, London, UK Jet Propulsion Laboratory, Pasadena, CA, USA Canadian Institute for Theoretical Astrophysics, University of Toronto, Canada National Energy Research Scientific Computing Center, LBNL, Berkeley, CA, USA IROE-CNR, Firenze, Italy Dept. of Physics, Univ. of California, Santa Barbara, CA, USA California Institute of Technology, Pasadena, CA, USA IPAC, California Institute of Technology, Pasadena, CA, USA Department of Astronomy, Space Sciences Lab and Center for Particle Astrophysics, University of CA, Berkeley, CA 94720 USA ENEA, Frascati, Italy Dept. of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, Wales, UK Nuclear and Astrophysics Laboratory, University of Oxford, Keble Road, Oxford, OX 3RH, UK Depts. of Physics and Astronomy, University of Toronto, Canada Istituto Nazionale di Geofisica, Roma, Italy ABSTRACT Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at ∼ 210, 540, 840 and ∼ 420, 750, respec- tively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflation- ary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a sec- ond 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: Ω tot = 1.02 +0.06 vs. 1.04±0.05, Ω b h 2 = 0.022 −0.003 vs. 0.019 +0.005 , and n s = 0.96 −0.09 vs. 0.90±0.08. The deviation in primordial spectral index n s is a consequence of the strong correlation with the optical depth. Subject headings: Cosmic Microwave Background Anisotropy, Cosmology


The Astrophysical Journal | 2006

A Measurement of the CMB EE Spectrum from the 2003 Flight of BOOMERANG

T. E. Montroy; Peter A. R. Ade; J. J. Bock; J. R. Bond; J. Borrill; A. Boscaleri; P. Cabella; Carlo R. Contaldi; B. P. Crill; P. de Bernardis; G. de Gasperis; A. de Oliveira-Costa; G. De Troia; G. Di Stefano; E. Hivon; A. H. Jaffe; T. S. Kisner; W. C. Jones; A. E. Lange; S. Masi; Philip Daniel Mauskopf; C. J. MacTavish; Alessandro Melchiorri; P. Natoli; C. B. Netterfield; Enzo Pascale; F. Piacentini; D. Pogosyan; G. Polenta; S. Prunet

We report measurements of the CMB polarization power spectra from the 2003 January Antarctic flight of BOOMERANG. The primary results come from 6 days of observation of a patch covering 0.22% of the sky centered near R.A. = 825, decl. = -45


The Astrophysical Journal | 2006

A measurement of the angular power spectrum of the CMB temperature anisotropy from the 2003 flight of Boomerang

W. C. Jones; Peter A. R. Ade; J. J. Bock; J. R. Bond; J. Borrill; A. Boscaleri; P. Cabella; Carlo R. Contaldi; B. P. Crill; P. de Bernardis; G. de Gasperis; A. de Oliveira-Costa; G. De Troia; G. Di Stefano; E. Hivon; A. H. Jaffe; T. S. Kisner; A. E. Lange; C. J. MacTavish; S. Masi; Philip Daniel Mauskopf; Alessandro Melchiorri; T. E. Montroy; P. Natoli; C. B. Netterfield; Enzo Pascale; F. Piacentini; D. Pogosyan; G. Polenta; S. Prunet

We report on observations of the cosmic microwave background (CMB) obtained during the 2003 January flight of BOOMERANG. These results are derived from 195 hr of observation with four 145 GHz polarization-sensitive bolometer (PSB) pairs, identical in design to the four 143 GHz Planck High Frequency Instrument (HFI) polarized pixels. The data include 75 hr of observations distributed over 1.84% of the sky with an additional 120 hr concentrated on the central portion of the field, which represents 0.22% of the full sky. From these data we derive an estimate of the angular power spectrum of temperature fluctuations of the CMB in 24 bands over the multipole range 50 ≤ l ≤ 1500. A series of features, consistent with those expected from acoustic oscillations in the primordial photon-baryon fluid, are clearly evident in the power spectrum, as is the exponential damping of power on scales smaller than the photon mean free path at the epoch of last scattering (l ≳ 900). As a consistency check, the collaboration has performed two fully independent analyses of the time-ordered data, which are found to be in excellent agreement.


Astronomy and Astrophysics | 2010

Planck pre-launch status: The HFI instrument, from specification to actual performance

J.-M. Lamarre; Jean-Loup Puget; Peter A. R. Ade; F. R. Bouchet; G. Guyot; A. E. Lange; F. Pajot; A. Arondel; K. Benabed; J.-L. Beney; A. Benoit; J.-Ph. Bernard; R. S. Bhatia; Y. Blanc; J. J. Bock; E. Bréelle; T. Bradshaw; P. Camus; A. Catalano; J. Charra; M. Charra; S. Church; F. Couchot; A. Coulais; B. P. Crill; M. Crook; K. Dassas; P. de Bernardis; J. Delabrouille; P. de Marcillac

Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range. Aims: The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods: The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results: The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification.


The Astrophysical Journal | 2006

Cosmological parameters from the 2003 flight of BOOMERANG

C. J. MacTavish; Peter A. R. Ade; J. J. Bock; J. R. Bond; J. Borrill; A. Boscaleri; P. Cabella; Carlo R. Contaldi; B. P. Crill; P. de Bernardis; G. de Gasperis; A. de Oliveira-Costa; G. De Troia; G. Di Stefano; E. Hivon; A. H. Jaffe; W. C. Jones; T. S. Kisner; A. E. Lange; A. M. Lewis; S. Masi; Philip Daniel Mauskopf; Alessandro Melchiorri; T. E. Montroy; P. Natoli; C. B. Netterfield; Enzo Pascale; F. Piacentini; D. Pogosyan; G. Polenta

We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrain the parameters of the ΛCDM model remarkably well and are consistent with constraints from a multiexperiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model that allows a CDM isocurvature admixture.


Astronomy and Astrophysics | 2003

Cosmological constraints from Archeops

A. Benoit; Peter A. R. Ade; A. Amblard; R. Ansari; Eric Aubourg; S. Bargot; James G. Bartlett; J.-Ph. Bernard; R. S. Bhatia; A. Blanchard; J. J. Bock; A. Boscaleri; F. R. Bouchet; A. Bourrachot; P. Camus; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; O. Dore; M. Douspis; L. Dumoulin; X. Dupac; Ph. Filliatre; P. Fosalba; K. Ganga; F. Gannaway; B. Gautier; M. Giard; Y. Giraud-Héraud

We analyze the cosmological constraints that Archeops places on adiabatic cold dark matter models with passive power-law initial fluctuations. Because its angular power spectrum has small bins in l and large l coverage down to COBE scales, Archeops provides a precise determination of the first acoustic peak in terms of position at multipole l_peak=220 +- 6, height and width. An analysis of Archeops data in combination with other CMB datasets constrains the baryon content of the Universe, Omega(b)h^2 = 0.022 (+0.003,-0.004), compatible with Big-Bang nucleosynthesis and with a similar accuracy. Using cosmological priors obtainedfrom recent non-CMB data leads to yet tighter constraints on the total density, e.g. Omega(tot)=1.00 (+0.03,-0.02) using the HST determination of the Hubble constant. An excellent absolute calibration consistency is found between Archeops and other CMB experiments, as well as with the previously quoted best fit model.The spectral index n is measured to be 1.04 (+0.10,-0.12) when the optical depth to reionization, tau, is allowed to vary as a free parameter, and 0.96 (+0.03,-0.04) when tau is fixed to zero, both in good agreement with inflation.


Astronomy and Astrophysics | 2003

The cosmic microwave background anisotropy power spectrum measured by archeops

A. Benoit; Peter A. R. Ade; A. Amblard; R. Ansari; Eric Aubourg; S. Bargot; James G. Bartlett; J.-Ph. Bernard; R. S. Bhatia; A. Blanchard; J. J. Bock; A. Boscaleri; F. R. Bouchet; A. Bourrachot; P. Camus; F. Couchot; P. de Bernardis; J. Delabrouille; F.-X. Desert; O. Dore; M. Douspis; L. Dumoulin; X. Dupac; Ph. Filliatre; P. Fosalba; K. Ganga; F. Gannaway; B. Gautier; M. Giard; Y. Giraud-Héraud

We present a determination by the Archeops experiment of the angular power spectrum of the cosmic microwave background anisotropy in 16 bins over the multipole range l=15-350. Archeops was conceived as a precursor of the Planck HFI instrument by using the same optical design and the same technology for the detectors and their cooling. Archeops is a balloon-borne instrument consisting of a 1.5 m aperture diameter telescope and an array of 21 photometers maintained at ~100 mK that are operating in 4 frequency bands centered at 143, 217, 353 and 545 GHz. The data were taken during the Arctic night of February 7, 2002 after the instrument was launched by CNES from Esrange base (Sweden). The entire data cover ~ 30% of the sky.This first analysis was obtained with a small subset of the dataset using the most sensitive photometer in each CMB band (143 and 217 GHz) and 12.6% of the sky at galactic latitudes above 30 degrees where the foreground contamination is measured to be negligible. The large sky coverage and medium resolution (better than 15 arcminutes) provide for the first time a high signal-to-noise ratio determination of the power spectrum over angular scales that include both the first acoustic peak and scales probed by COBE/DMR. With a binning of Delta(l)=7 to 25 the error bars are dominated by sample variance for l below 200. A companion paper details the cosmological implications.

Collaboration


Dive into the P. de Bernardis's collaboration.

Top Co-Authors

Avatar

S. Masi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Boscaleri

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Piacentini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

A. E. Lange

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Borrill

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

V. V. Hristov

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. P. Crill

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge