Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Desiati is active.

Publication


Featured researches published by P. Desiati.


Science | 2013

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

M. Aartsen; R. Abbasi; Y. Abdou; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; D. Altmann; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; S. Bechet; J. Becker Tjus; K. Becker; M. L. Benabderrahmane; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; Daniel Bertrand; David Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss

Introduction Neutrino observations are a unique probe of the universe’s highest-energy phenomena: Neutrinos are able to escape from dense astrophysical environments that photons cannot and are unambiguous tracers of cosmic ray acceleration. As protons and nuclei are accelerated, they interact with gas and background light near the source to produce subatomic particles such as charged pions and kaons, which then decay, emitting neutrinos. We report on results of an all-sky search for these neutrinos at energies above 30 TeV in the cubic kilometer antarctic IceCube observatory between May 2010 and May 2012. A 250 TeV neutrino interaction in IceCube. At the neutrino interaction point (bottom), a large particle shower is visible, with a muon produced in the interaction leaving up and to the left. The direction of the muon indicates the direction of the original neutrino. Methods We have isolated a sample of neutrinos by rejecting background muons from cosmic ray showers in the atmosphere, selecting only those neutrino candidates that are first observed in the detector interior rather than on the detector boundary. This search is primarily sensitive to neutrinos from all directions above 60 TeV, at which the lower-energy background atmospheric neutrinos become rare, with some sensitivity down to energies of 30 TeV. Penetrating muon backgrounds were evaluated using an in-data control sample, with atmospheric neutrino predictions based on theoretical modeling and extrapolation from previous lower-energy measurements. Results We observed 28 neutrino candidate events (two previously reported), substantially more than the 10.6 −3.6 +5.0 expected from atmospheric backgrounds, and ranging in energy from 30 to 1200 TeV. With the current level of statistics, we did not observe significant clustering of these events in time or space, preventing the identification of their sources at this time. Discussion The data contain a mixture of neutrino flavors compatible with flavor equipartition, originate primarily from the Southern Hemisphere where high-energy neutrinos are not absorbed by Earth, and have a hard energy spectrum compatible with that expected from cosmic ray accelerators. Within our present knowledge, the directions, energies, and topologies of these events are not compatible with expectations for terrestrial processes, deviating at the 4σ level from standard assumptions for the atmospheric background. These properties, in particular the north-south asymmetry, generically disfavor any purely atmospheric explanation for the data. Although not compatible with an atmospheric explanation, the data do match expectations for an origin in unidentified high-energy galactic or extragalactic neutrino accelerators. Extraterrestrial Neutrinos Neutrinos are thought to be produced in astrophysical sources outside our solar system but, up until recently, they had only been observed from one supernova in 1987. Aartsen et al. (10.1126/science.1242856; see the cover) report data obtained between 2010 and 2012 with the IceCube neutrino detector that reveal the presence of a high-energy neutrino flux containing the most energetic neutrinos ever observed, including 28 events at energies between 30 and 1200 TeV. Although the origin of this flux is unknown, the findings are consistent with expectations for a neutrino population with origins outside the solar system. The IceCube observatory at the South Pole detected neutrinos from outside our solar system. We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4σ level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.


Physical Review Letters | 2013

First Observation of PeV-Energy Neutrinos with IceCube

M. Aartsen; R. Abbasi; Y. Abdou; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; D. Altmann; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; S. Bechet; J. Becker Tjus; K. Becker; M. Bell; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; Daniel Bertrand; David Z. Besson; G. Binder; D. Bindig

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04±0.16 and 1.14±0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current ν(e,μ,τ) (ν(e,μ,τ)) or charged-current ν(e) (ν(e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082±0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9×10(-3) (2.8σ) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.


The Astrophysical Journal | 2010

Measurement Of The Anisotropy Of Cosmic-Ray Arrival Directions With Icecube

R. Abbasi; Y. Abdou; T. Abu-Zayyad; J. Adams; J. A. Aguilar; M. Ahlers; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; R. Bay; J. L. Bazo Alba; K. Beattie; J. J. Beatty; S. Bechet; J. Becker; K.-H. Becker; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; D. Besson; M. Bissok; E. Blaufuss; D. J. Boersma; C. Bohm

We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of similar to 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 +/- 0.2 stat. +/- 0.8 syst.) x 10(-4).


The Astrophysical Journal | 2010

MAGNETIC RECONNECTION AS THE CAUSE OF COSMIC RAY EXCESS FROM THE HELIOSPHERIC TAIL

A. Lazarian; P. Desiati

The observation of a broad excess of sub-TeV cosmic rays compatible with the direction of the heliospheric tail and the discovery of two significant localized excess regions of multi-TeV cosmic rays by the MILAGRO Collaboration, also from the same region of the sky, have raised questions on their origin. In particular, the coincidence of the most significant localized region with the direction of the heliospheric tail and the small angular scale of the observed anisotropy (~10°) is suggestive of a local origin and of a possible connection to the low-energy broad excess. Cosmic ray acceleration from magnetic reconnection in the magnetotail is proposed as a possible source of the energetic particles.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2007

Light tracking through ice and water : Scattering and absorption in heterogeneous media with PHOTONICS

Johan Lundberg; P. Miocinovic; K. Woschnagg; T. Burgess; J. Adams; S. Hundertmark; P. Desiati; P. Niessen

Abstract In the field of neutrino astronomy, large volumes of optically transparent matter like glacial ice, lake water, or deep ocean water are used as detector media. Elementary particle interactions are studied using in situ detectors recording time distributions and fluxes of the faint photon fields of Cherenkov radiation generated by ultra-relativistic charged particles, typically muons or electrons. The P hotonics software package was developed to determine photon flux and time distributions throughout a volume containing a light source through Monte Carlo simulation. Photons are propagated and time distributions are recorded throughout a cellular grid constituting the simulation volume, and Mie scattering and absorption are realised using wavelength and position dependent parameterisations. The photon tracking results are stored in binary tables for transparent access through ansi-c and c++ interfaces. For higher-level physics applications, like simulation or reconstruction of particle events, it is then possible to quickly acquire the light yield and time distributions for a pre-specified set of light source and detector properties and geometries without real-time photon propagation. In this paper the P hotonics light propagation routines and methodology are presented and applied to the IceCube and A ntares neutrino telescopes. The way in which inhomogeneities of the Antarctic glacial ice distort the signatures of elementary particle interactions, and how P hotonics can be used to account for these effects, is described.


Physical Review D | 2013

IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters

M. G. Aartsen; R. Abbasi; Y. Abdou; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; D. Altmann; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; S. Bechet; J. Becker Tjus; K. Becker; M. L. Benabderrahmane; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Bertrand; David Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss

We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high-energy neutrinos acquired in 339.8 days of live time during 2009/10 with the IceCube neutrino observatory in its 59-string configuration. The targets of interest include the Virgo and Coma galaxy clusters, the Andromeda galaxy, and several dwarf galaxies. We obtain upper limits on the cross section as a function of the weakly interacting massive particle mass between 300 GeV and 100 TeV for the annihilation into b (b) over bar, W+(W) over bar (-), tau(+)tau(-), mu(+)mu(-) , and nu(nu) over bar. A limit derived for the Virgo cluster, when assuming a large effect from subhalos, challenges the weakly interacting massive particle interpretation of a recently observed GeV positron excess in cosmic rays.


Science | 2014

Global Anisotropies in TeV Cosmic Rays Related to the Sun’s Local Galactic Environment from IBEX

N. A. Schwadron; Fred C. Adams; E. R. Christian; P. Desiati; Priscilla C. Frisch; H. O. Funsten; J. R. Jokipii; D. J. McComas; Eberhard Moebius; G. P. Zank

Ordering Cosmic Rays Earth and other planets are constantly bombarded by cosmic rays (charged particles from the cosmos). The flux of very-high-energy cosmic rays varies according to where we look in the sky. Schwadron et al. (p. 988, published online 13 February) show that recent measurements of the local interstellar parameters by NASAs Interstellar Boundary Explorer satellite are consistent with observed cosmic ray anisotropies at tera–electron volt energies, implying that local interstellar conditions play a role in ordering very-high-energy cosmic rays in our cosmic vicinity. Local interstellar conditions play a role in ordering very-high-energy cosmic rays in the Sun’s immediate environment. Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera–electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.


The Astrophysical Journal | 2013

Anisotropy of TeV Cosmic Rays and Outer Heliospheric Boundaries

P. Desiati; A. Lazarian

Cosmic rays in the energy range from about tens of GeV to several hundreds of TeV are observed on Earth, with an energy-dependent anisotropy of order 0.01%-0.1% and a consistent topology that appears to significantly change at higher energy. The nearest and most recent galactic cosmic-ray sources might stochastically dominate the observation and possibly explain a change in orientation of the anisotropy as a function of energy. However, the diffusion approximation is not able to explain its non-dipolar structure and, in particular, the significant contribution of small angular scale features. Particle propagation within the mean free path in the local interstellar medium might have a major role in determining the properties of galactic cosmic rays, such as their arrival distribution. In particular, scattering on perturbations induced in the local interstellar magnetic field by the heliosphere wake may cause a re-distribution of anisotropic cosmic rays below about 100 TeV toward the direction of the elongated heliotail and of the local interstellar magnetic field in the outer heliosphere. Such scattering processes are considered responsible for the observed TeV cosmic-ray global anisotropy and its fine angular structure.


Physical Review D | 2013

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

M. Aartsen; R. Abbasi; Y. Abdou; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; D. Altmann; K. Andeen; J. Auffenberg; X. Bai; M. Baker; S. W. Barwick; V. Baum; R. Bay; K. Beattie; J. J. Beatty; S. Bechet; J. Becker Tjus; K. Becker; M. Bell; M. L. Benabderrahmane; S. BenZvi; J. Berdermann; P. Berghaus; D. Berley; E. Bernardini; D. Bertrand; David Z. Besson; D. Bindig

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above similar to 500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10(-3) for the flux coming from the Galactic plane region (-80 degrees less than or similar to l less than or similar to -30 degrees; -10 degrees less than or similar to b less than or similar to 5 degrees) in the energy range 1.2-6.0 PeV. In the same energy range, point source fluxes with E-2 spectra have been excluded at a level of (E/TeV)(2)d Phi/dE similar to 10(-12)-10(-11) cm(-2) s(-1) TeV-1 depending on source declination. The complete IceCube detector will have a better sensitivity (due to the larger detector size), improved reconstruction, and vetoing techniques. Preliminary data from the nearly final IceCube detector configuration have been used to estimate the 5-yr sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters.


Physical Review D | 2012

Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

Anatoli Fedynitch; Julia Becker Tjus; P. Desiati

The recent observations of muon charge ratio up to about 10 TeV and of atmo- spheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields) of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simu- lator CORSIKA 6.990 was used for showering and propagation of the secondary parti- cles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly in fl uenced by the different representations of the K/� ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than+15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25/-19%, respectively. See the published paper (1).

Collaboration


Dive into the P. Desiati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Bai

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

M. Ahlers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R. Bay

University of California

View shared research outputs
Top Co-Authors

Avatar

S. W. Barwick

University of California

View shared research outputs
Top Co-Authors

Avatar

P. Berghaus

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

S. BenZvi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J. Adams

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Aguilar

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge