Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Divieti is active.

Publication


Featured researches published by P. Divieti.


Nature | 2003

Osteoblastic cells regulate the haematopoietic stem cell niche

Laura M. Calvi; Gregor B. Adams; K. W. Weibrecht; Jonathan M. Weber; David P. Olson; M.C. Knight; Roderick P. Martin; Ernestina Schipani; P. Divieti; F. R. Bringhurst; Laurie A. Milner; Henry M. Kronenberg; David T. Scadden

Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by γ-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.


Endocrinology | 2002

Human PTH-(7-84) Inhibits Bone Resorption in Vitro Via Actions Independent of the Type 1 PTH/PTHrP Receptor

P. Divieti; Markus R. John; Harald Jüppner; F. R. Bringhurst

The linear sequence of intact mammalian PTH consists of 84 amino acids, of which only the most amino(N)-terminal portion, i.e. PTH-(1-34), is required for the classical actions of the hormone on mineral ion homeostasis mediated by the type 1 PTH/PTHrP receptor (PTH1R). Like the N-terminus, the carboxyl (C)-terminal sequence of PTH is highly conserved among species, and various circulating PTH C-fragments are generated by peripheral metabolism of intact PTH or are directly secreted, in a calcium-dependent manner, by the parathyroid glands. Certain synthetic PTH C-fragments exert actions on bone and cartilage cells that are not shared by PTH-(1-34), and specific binding of PTH C-peptides has been demonstrated in bone cells in which PTH1R expression was eliminated by gene targeting. The peptide human (h) PTH-(7-84) recently was shown to inhibit the calcemic actions of hPTH-(1-34) or hPTH-(1-84) in parathyroidectomized animals. To determine whether this anticalcemic effect of hPTH-(7-84) in vivo might result ...


Endocrinology | 2001

Receptors for the Carboxyl-Terminal Region of PTH(1–84) Are Highly Expressed in Osteocytic Cells1

P. Divieti; N. Inomata; Kelli Chapin; R. Singh; Harald Jüppner; F. R. Bringhurst

PTH is a potent systemic regulator of cellular differentiation and function in bone. It acts upon cells of the osteoblastic lineage via the G protein-coupled type-1 PTH/PTH-related peptide receptor (PTH1R). Carboxyl fragments of intact PTH(1–84) (C-PTH fragments) are cosecreted with it by the parathyroid glands in a calcium-dependent manner and also are generated via proteolysis of the hormone in peripheral tissues. Receptors that recognize C-PTH fragments (CPTHRs) have been described previously in osteoblastic and chondrocytic cells. To directly study CPTHRs in bone cells, we isolated clonal, conditionally transformed cell lines from fetal calvarial bone of mice that are homozygous for targeted ablation of the PTH1R gene and transgenically express a temperature-sensitive mutant SV40 T antigen. Cells with the highest specific binding of the CPTHR radioligand 125I-[Tyr34]hPTH(19–84) exhibited a stellate, dendritic appearance suggestive of an osteocytic phenotype and expressed 6- to 10-fold more CPTHR sites...PTH is a potent systemic regulator of cellular differentiation and function in bone. It acts upon cells of the osteoblastic lineage via the G protein-coupled type-1 PTH/PTH-related peptide receptor (PTH1R). Carboxyl fragments of intact PTH(1-84) (C-PTH fragments) are cosecreted with it by the parathyroid glands in a calcium-dependent manner and also are generated via proteolysis of the hormone in peripheral tissues. Receptors that recognize C-PTH fragments (CPTHRs) have been described previously in osteoblastic and chondrocytic cells. To directly study CPTHRs in bone cells, we isolated clonal, conditionally transformed cell lines from fetal calvarial bone of mice that are homozygous for targeted ablation of the PTH1R gene and transgenically express a temperature-sensitive mutant SV40 T antigen. Cells with the highest specific binding of the CPTHR radioligand (125)I-[Tyr(34)]hPTH(19-84) exhibited a stellate, dendritic appearance suggestive of an osteocytic phenotype and expressed 6- to 10-fold more CPTHR sites/cell than did osteoblastic cells previously isolated from the same bones. In these osteocytic (OC) cells, expression of mRNAs for CD44, connexin 43, and osteocalcin was high, whereas that for alkaline phosphatase and cbfa-1/osf-2 was negligible. The CPTHR radioligand was displaced completely by hPTH(1-84), hPTH(19-84) and hPTH(24-84) (IC(50)s = 20-50 nM) and by hPTH(39-84) (IC(50) = 500 nM) but only minimally (24%) by 10,000 nM hPTH(1-34). CPTHR binding was down-regulated dose dependently by hPTH(1-84), an effect mimicked by ionomycin and active phorbol ester. Human PTH(1-84) and hPTH(39-84) altered connexin 43 expression and increased apoptosis in OC cells. Apoptosis induced by PTH(1-84) was blocked by the caspase inhibitor DEVD. We conclude that osteocytes, the most abundant cells in bone, may be principal target cells for unique actions of intact PTH(1-84) and circulating PTH C-fragments that are mediated by CPTHRs.


Endocrinology | 1998

The Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Mediates Actions of Both Ligands in Murine Bone*

Beate Lanske; P. Divieti; Christopher S. Kovacs; Alison E. Pirro; W. J. Landis; Stephen M. Krane; F. R. Bringhurst; Henry M. Kronenberg

PTH and PTH-related peptide (PTHrP) have been shown to bind to and activate the same PTH/PTHrP receptor. Recent studies have demonstrated, however, the presence of additional receptors specific for each ligand. We used the PTHrP and PTH/PTHrP receptor gene knock-out models to investigate whether this receptor mediates the actions of both ligands in bone. The similar phenotype of the PTHrP (−/−) and PTH/PTHrP receptor (−/−) animals in the growth plate of the tibia suggests that this receptor mediates the actions of PTHrP. Electron microscopic studies have confirmed the accelerated differentiation and disordered organization of chondrocytes, with the accumulation of large amounts of dispersed glycogen granules in the cytoplasm of proliferative and maturing cells of both genotypes. The contrasting growth plate mineralization patterns of the PTHrP (−/−) and PTH/PTHrP receptor (−/−) mice, however, suggest that the actions of PTHrP and the PTH/PTHrP receptor are not identical. Studies using calvariae from PTH/P...


Bone | 2003

Hedgehog promotes primary osteoblast differentiation and increases PTHrP mRNA expression and iPTHrP secretion

Rune Jemtland; P. Divieti; Kaechoong Lee; Gino V. Segre

We used both clonal osteoblast-like cells and primary calvarial osteoblastic cells to examine the role of Hedgehog in osteoblast biology. Primary osteoblasts and several clonal osteoblast-like cell lines express Indian hedgehog (Ihh), and genes encoding both components of its receptor, patched (Ptc) and smoothened (Smo). Moreover, Ihh is relatively increased in phenotypically mature clonal cells and it increases by fivefold in primary osteoblasts as they mature in culture. Recombinant N-terminal Sonic Hedgehog (rSHH-N) upregulates Ptc and Gli-1 in osteoblasts, classical transcriptional targets. Furthermore; in response to rSHH-N, immunoreactive parathyroid hormone-related peptide (iPTHrP) secretion is transiently increased in medium conditioned by primary osteoblasts. Changes in PTHrP expression mirror those of iPTHrP, except in late cultures, when mRNA levels remain relatively elevated in response to rSHH-N. Gli-1, but not Ptc, becomes resistant to treatment with rSHH-N over a time course paralleling that of PTHrP, suggesting that mechanisms regulated by Gli-1 affect PTHrP. Last, rSHH-N increases formation of mineralized bone nodules and it accelerates expression of alkaline phosphatase, alkaline phosphatase activity, and mineralization. Taken together, these data suggest a functional role for Hedgehog protein in osteoblast recruitment and differentiation, which includes stimulation of PTHrP expression and secretion.


Journal of Bone and Mineral Research | 1998

Conditionally immortalized murine osteoblasts lacking the Type 1 PTH/PTHrP receptor

P. Divieti; Beate Lanske; Henry M. Kronenberg; F. R. Bringhurst

Osteoblasts synthesize and mineralize bone matrix and are principal target cells for parathyroid hormone (PTH). The type 1 PTH/PTH‐related protein (PTHrP) receptor (PTH1R), cloned from rat osteoblastic cells, activates multiple intracellular signaling mechanisms. The specific roles of these PTH1R signals, or of responses to other types of PTH receptors that may be expressed, in regulating osteoblast function are incompletely understood. Use of established mammalian osteoblastic cell lines has led to much understanding of PTH action in bone, although such cells are of neoplastic origin or have other characteristics that compromise their validity as models of normal osteoblasts. To examine the role of the PTH1R in osteoblast biology, we have isolated a series of clonal murine calvarial osteoblastic cell lines that are only conditionally immortalized, via expression of a transgene encoding the tsA58 temperature‐sensitive SV40 large T antigen, and that lack both functional alleles of the PTH1R gene. When cultured under nontransforming conditions, these cells stopped proliferating, expressed a series of characteristic osteoblastic genes (including the nonfunctional remnant of the PTH1R gene), and, after 3–4 weeks, produced mineralized bone nodules in a manner that was regulated by 1,25‐dihydroxyvitamin D3 but not by PTH(1–84). Cyclic AMP measurements revealed no evidence of expression of alternate species of Gs‐linked PTH receptors. Stable transfection with PTH1R cDNA reconstituted both PTH binding and adenylyl cyclase activation, increased basal osteocalcin expression, and supported PTH stimulation of c‐Fos expression and matrix mineralization. These conditionally transformed, PTH1R(−/−) clonal osteoblastic cell lines should prove useful for studies of the regulation of osteoblast differentiation and function by both endogenous nonclassical species of PTH (or PTHrP) receptors and mutant signal‐selective PTH1Rs.


Journal of Bone and Mineral Research | 2001

Stimulation of protein kinase C activity in cells expressing human parathyroid hormone receptors by C- and N-terminally truncated fragments of parathyroid hormone 1-34.

James F. Whitfield; R. J. Isaacs; Balu Chakravarthy; S. MacLean; Paul Morley; Gordon E. Willick; P. Divieti; F. R. Bringhurst

The parathyroid hormone (PTH) fragment PTH(1–34) stimulates adenylyl cyclase, phospholipase C (PLC), and protein kinase Cs (PKCs) in cells that express human, opossum, or rodent type 1 PTH/PTH‐related protein (PTHrP) receptors (PTHR1s). Certain carboxyl (C)‐terminally truncated fragments of PTH(1–34), such as human PTH(1–31) [hPTH‐(1–31)NH2], stimulate adenylyl cyclase but not PKCs in rat osteoblasts or PLC and PKCs in mouse kidney cells. The hPTH(1–31)NH2 peptide does fully stimulate PLC in HKRK B7 porcine renal epithelial cells that express 950,000 transfected hPTHR1s per cell. Amino (N)‐terminally truncated fragments, such as bovine PTH(3–34) [bPTH(3–34)], hPTH(3–34)NH2, and hPTH(13–34), stimulate PKCs in Chinese hamster ovary (CHO) cells expressing transfected rat receptors, opossum kidney cells, and rat osteoblasts, but an intact N terminus is needed to stimulate PLC via human PTHR1s in HKRK B7 cells. We now report that the N‐terminally truncated analogs bPTH(3–34)NH2 and hPTH(13–34)OH do activate PKC via human PTHR1s in HKRK B7 cells, although less effectively than hPTH(1–34)NH2 and hPTH(1–31)NH2. Moreover, in a homologous human cell system (normal foreskin fibroblasts), these N‐terminally truncated fragments stimulate PKC activity as strongly as hPTH(1–34)NH2 and hPTH(1–31)NH2. Thus, it appears that unlike their opossum and rodent equivalents, hPTHR1s can stimulate both PLC and PKCs when activated by C‐terminally truncated fragments of PTH(1–34). Furthermore, hPTHR1s, like the PTHR1s in rat osteoblasts, opossum kidney cells, and rat PTHR1‐transfected CHO cells also can stimulate PKC activity by a mechanism that is independent of PLC. The efficiency with which the N‐terminally truncated PTH peptides stimulate PKC activity depends on the cellular context in which the PTHR1s are expressed.


Endocrinology | 2008

CBP/p300-Interacting Protein CITED1 Modulates Parathyroid Hormone Regulation of Osteoblastic Differentiation

Dehong Yang; Jun Guo; P. Divieti; Toshi Shioda; F. Richard Bringhurst

PTH regulates osteoblastic differentiation and activity and exerts different overall skeletal effects in vivo, depending on the schedule and dose of administration. In clonal Wt9 murine osteoblastic cells, mRNA and protein levels of CITED1 transcriptional coactivator were strongly up-regulated by human (h) PTH(1-34). Stimulation of CITED1 mRNA by PTH was transient, peaking at 4 h, concentration dependent, and blocked by actinomycin D but not cycloheximide. The stimulation was mimicked by forskolin, phorbol ester, and the cAMP-selective PTH analog [G(1),R(19)] hPTH (1-28) and inhibited completely by the protein kinase A inhibitor, H89 and partially by phorbol ester-induced protein kinase C depletion. Increased CITED1 expression was not maintained during persistent (24 h) PTH exposure. Cultured primary calvarial osteoblasts from neonatal homozygous or hemizygous CITED1-knockout (KO) mice achieved 2-fold greater mineralized nodule formation in comparison with wild type (WT) osteoblasts. This effect was blocked by restoration of CITED1 expression via adenoviral gene transfer. Intermittent administration of hPTH(1-34) (10 nm, for 4 h every 48 h) for 3-6 wk increased mineralization up to 2-fold over basal levels in both WT and CITED1 KO mouse calvarial cell cultures. Whereas the cAMP-selective [G(1),R(19)]hPTH(1-28) analog [at 100 nm, equivalent to 10 nm hPTH(1-34)] did not stimulate mineralization in WT cultures, it was twice as effective as hPTH(1-34) in CITED1 KO cultures. Thus, CITED1 negatively regulates osteoblastic differentiation in vitro and inhibits the cAMP-dependent stimulation of differentiation by intermittent PTH. We conclude also that PTH receptor signaling pathways independent of cAMP restrain osteoblastic differentiation, an effect normally obscured in the presence of CITED1 but revealed in its absence.


Journal of Bone and Mineral Research | 2000

Lactam Formation Increases Receptor Binding, Adenylyl Cyclase Stimulation and Bone Growth Stimulation by Human Parathyroid Hormone (hPTH)(1–28)NH2

James F. Whitfield; Paul Morley; Gordon E. Willick; R. J. Isaacs; S. MacLean; V. Ross; J.-R. Barbier; P. Divieti; F. R. Bringhurst

Human parathyroid hormone (1–28)NH2 [hPTH(1–28)NH2] is the smallest of the PTH fragments that can fully stimulate adenylyl cyclase in ROS 17/2 rat osteoblast‐like osteosarcoma cells. This fragment has an IC50 of 110 nM for displacing 125I‐[Nle8,18, Tyr34]bovine PTH(1–34)NH2 from HKRK B7 porcine kidney cells, which stably express 950,000 human type 1 PTH/PTH‐related protein (PTHrP) receptors (PTH1Rs) per cell. It also has an EC50 of 23.9 nM for stimulating adenylyl cyclase in ROS 17/2 cells. Increasing the amphiphilicity of the α‐helix in the residue 17–28 region by replacing Lys27 with Leu and stabilizing the helix by forming a lactam between Glu22 and Lys26 to produce the [Leu27]cyclo(Glu22‐Lys26)hPTH(1–28)NH2 analog dramatically reduced the IC50 for displacing 125I‐[Nle8,18, Tyr34]bPTH(1–34)NH2 from hPTHIRs from 110 to 6 nM and dropped the EC50 for adenylyl cyclase stimulation in ROS 17/2 cells from 23.9 to 9.6 nM. These modifications also increased the osteogenic potency of hPTH(1–28)NH2. Thus, hPTH(1–28)NH2 did not significantly stimulate either femoral or vertebral trabecular bone growth in rats when injected daily at a dose of 5 nmol/100 g body weight for 6 weeks, beginning 2 weeks after ovariectomy (OVX), but it strongly stimulated the growth of trabeculae in the cancellous bone of the distal femurs and L5 vertebrae when injected at 25 nmol/100 g body weight. By contrast [Leu27]cyclo(Glu22‐Lys26)hPTH(1–28)NH2 significantly stimulated trabecular bone growth when injected at 5 nmol/100 g of body weight. Thus, these modifications have brought the bone anabolic potency of hPTH(1–28)NH2 considerably closer to the potencies of the larger PTH peptides and analogs. (J Bone Miner Res 2000;15:964–970)


Journal of Endocrinological Investigation | 1996

Effect of an oral calcium load on urinary markers of collagen breakdown

Alessandro Rubinacci; P. Divieti; R. M. Polo; M G Zampino; Giuseppina Resmini; Ruggero Tenni

Aim of this study was to investigate whether osteoclast activity changes as a consequence of even mild physiological perturbation of plasma calcium as such induced by an oral calcium load. Osteoclast activity was determined indirectly by measuring, in spot urines at two and four hours after oral calcium load, the urinary excretion of hydroxylysylpyridinoline (Pyr), deoxylysylpyridinoline (D-Pyr), hydroxyproline (Hyp) and galactosyl-hydroxylysine (GHyl). The occurrence of the metabolic perturbation of plasma calcium homeostasis was assessed by measuring three indexes: i.e. calcemie response, PTH reduction and calciuric response at times following oral calcium loading. A significant fall of urinary D-Pyr and Pyr followed the perturbation of calcium homeostasis induced by the oral calcium load in two groups of healthy young adult and postmenopausal women. The highest mean percent reduction was observed for D-Pyr and was quantitatively similar in the two groups. Since urinary D-Pyr is the most specific bone resorption marker, it may be inferred that the perturbation of plasma calcium homeostasis induced by an oral calcium load is able to acutely inhibit osteoclast activity. This supports the view that osteoclasts are involved in the short-term error correction of plasma calcium.

Collaboration


Dive into the P. Divieti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Rubinacci

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge