P. Domínguez-García
National University of Distance Education
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Domínguez-García.
Applied Physics Letters | 2006
Ana Egatz-Gómez; Sonia Melle; Antonio A. Garcia; Solitaire Lindsay; Manuel Marquez; P. Domínguez-García; Miguel A. Rubio; S. T. Picraux; J. L. Taraci; T. Clement; Dongqing Yang; Mark A. Hayes; Devens Gust
We present a method to move and control drops of water on superhydrophobic surfaces using magnetic fields. Small water drops (volume of 5–35μl) that contain fractions of paramagnetic particles as low as 0.1% in weight can be moved at relatively high speed (7cm∕s) by displacing a permanent magnet placed below the surface. Coalescence of two drops has been demonstrated by moving a drop that contains paramagnetic particles towards an aqueous drop that was previously pinned to a surface defect. This approach to microfluidics has the advantages of faster and more flexible control over drop movement.
Journal of Colloid and Interface Science | 2009
P. Domínguez-García; Sonia Melle; Miguel A. Rubio
We study the morphology of the chain-like aggregates formed when a external constant and uniaxial magnetic field is applied to a magneto-rheological (MR) fluid. In order to characterize the conformation of the aggregates, we study the evolution of various fractal dimensions during aggregation and disaggregation processes (i.e., when the applied field is switched on and off), using video-microscopy and image analysis. Experiments have been performed by varying the values of two external parameters: the magnetic field amplitude and particle concentration. We found that the box-counting dimension, related with how the aggregates occupy the surrounding space, depends on the ratio R(1)/R(0). During the first stage of the disaggregation process, when the particles are moving by Brownian motion inside the aggregate, Family-Vicsek scaling function is verified.
European Physical Journal E | 2011
P. Domínguez-García; J. M. Pastor; Miguel A. Rubio
Abstract.This article presents results on the aggregation and disaggregation kinetics on a 1μm diameter charged superparamagnetic particles dispersed in water under a constant uniaxial magnetic field in experiments with salt (KCl) added to the suspension in order to observe the behaviour of the system when the electrical properties of the particles have been screened. These particles have an electric charge and are confined between two separated 100μm thick quartz windows, and sediment near the charged bottom wall. The electrostatic interactions that take place in this experimental setup may affect the micro-structure and colloidal stability of the suspension and thus, the dynamics of aggregation and disaggregation.
Physical Review E | 2014
P. Domínguez-García; Frédéric Cardinaux; Elena Bertseva; László Forró; Frank Scheffold; Sylvia Jeney
We study the Brownian motion of microbeads immersed in water and in a viscoelastic wormlike micelles solution by optical trapping interferometry and diffusing wave spectroscopy. Through the mean-square displacement obtained from both techniques, we deduce the mechanical properties of the fluids at high frequencies by explicitly accounting for inertia effects of the particle and the surrounding fluid at short time scales. For wormlike micelle solutions, we recover the 3/4 scaling exponent for the loss modulus over two decades in frequency as predicted by the theory for semiflexible polymers.
Computer Physics Communications | 2009
P. Domínguez-García; Miguel A. Rubio
JChainsAnalyser is a Java-based program for the analysis of two-dimensional images of magneto-rheological fluids (MRF) at low concentration of particles obtained using the video-microscopy technique. MRF are colloidal dispersions of micron-sized polarizable particles in a carrier fluid with medium to low viscosity. When a magnetic field is applied to the suspension, the particles aggregate forming chains or clusters. Aggregation dynamics [P. Dominguez-Garcia, S. Melle, J.M. Pastor, M.A. Rubio, Phys. Rev. E 76 (2007) 051403] and morphology of the aggregates [P. Dominguez-Garcia, S. Melle, M.A. Rubio, J. Colloid Interface Sci. 333 (2009) 221–229] have been studied capturing images of the fluid and analyzing them by using this software. The program allows to analyze automatically the MRF images by means of an adequate combination of different imaging methods, while magnitudes and statistics are calculated and saved in data files. It is possible to run the program on a desktop computer, using the GUI (graphical user interface), or in a cluster of processors or remote computer by means of command-line instructions.
Applied Physics Letters | 2016
P. Domínguez-García; László Forró; Sylvia Jeney
We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic, and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending on the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.
Computer Physics Communications | 2015
A. Butykai; Flavio M. Mor; R. Gaál; P. Domínguez-García; László Forró; Sylvia Jeney
Optical tweezers are commonly used and powerful tools to perform force measurements on the piconewton scale and to detect nanometer-scaled displacements. However, the precision of these instruments relies to a great extent on the accuracy of the calibration method. A well-known calibration procedure is to record the stochastic motion of the trapped particle and compare its statistical behavior with the theory of the Brownian motion in a harmonic potential. Here we present an interactive calibration software which allows for the simultaneous fitting of three different statistical observables (power spectral density, mean square displacement and velocity autocorrelation function) calculated from the trajectory of the probe to enhance fitting accuracy. The fitted theory involves the hydrodynamic interactions experimentally observable at high sampling rates. Furthermore, a qualitative extension is included in our model to handle the thermal fluctuations in the orientation of optically trapped asymmetric objects. The presented calibration methodology requires no prior knowledge of the bead size and can be applied to non-spherical probes as well. The software was validated on synthetic and experimental data. Program summary Program title: PFMCal Catalogue identifier: AEXH_v1_0 Program summary URL: http://cpc.cs.qub.ac.ukisummaries/AEXH_v1_0.html Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 206,399 No. of bytes in distributed program, including test data, etc.: 10,319,465 Distribution format: tar.gz Programming language: MatLab 2011a (Math Works Inc.). Computer: General computer running MatLab (MathWorks Inc.), using Statistics Toolbox. Operating system: Any which supports Matlab using Statistics Toolbox. RAM: 10 MB Classification: 3, 4.9, 18, 23. Nature of problem: Calibration of optical tweezers by measuring the Brownian motion of the trapped object. The voltage-to-displacement ratio of the detection system (the inverse of the sensitivity), the stiffness of the trap and the size of the bead are obtained via the simultaneous fitting of the power spectral density (PSD), mean square displacement (MSD) and velocity autocorrelation (VAF) functions calculated from the trajectory. The calibration can be performed for non-spherical probes as well. Solution method: Initialization points for all parameters are inferred from characteristic features of the statistical observables (PSD, MSD and VAF) based on the method developed by Grimm et al. in [1]. Theoretical functions for the PSD, the MSD and the VAF are calculated from the model of Brownian motion confined by a harmonic potential taking hydrodynamic interactions into consideration [2-4]. This calibration methodology has been successfully used in actual experiments with micro-spheres [5, 6]. Calculated functions are fitted to the measurement data via the Levenberg-Marquardt least square fitting routine available in the MatLab Optimalization Toolbox, using the nlinfit function. If the error to the measured data has been estimated, the corresponding data values can be weighted by the inverse of the standard error squared in order to eliminate bias introduced by heteroscedasticity. In order to increase robustness and avoid convergence to local minima, minimum search from multiple initial values in the vicinity of the first guess is possible. Additional comments: Input of the program is the experimental PSDexp, MSDexp, and VAF(exp) data points calculated from the measured x, y and z projections of the trajectory of the particle. The data may best be blocked and may optionally contain an error for each data point for better results. The data should be formatted into three columns: 1. independent variables (time or frequency array), 2. function values, 3. optionally, error values (e.g. standard error calculated from the binning) to improve fitting efficiency. In case error values were not estimated, the third column should be filled with zeros. The first row is reserved for a header, data is read from the second row. Data size should not be larger than a few hundreds of rows, otherwise, using larger blocks for binning is advised. In order to observe the short time behavior of the Brownian motion, influenced by hydrodynamic effects, the sampling rate should be typically higher than 100 kHz. Total sampling time is typically tens of seconds, to achieve a good resolution in the frequency range. The optical axis of the laser, the microscope and the detector system should be co-aligned to exclude artificial crosstalk between the x, y and z channels of the position detector. Running time: Seconds (C) 2015 Elsevier B.V. All rights reserved.
European Physical Journal E | 2012
P. Domínguez-García
AbstractBy using microrheological methods commonly employed in videomicroscopy experiments, we study the rheology of a two-dimensional computational fluid formed by Brownian disks with the aim of exploring the influence of some effective colloid-colloid attractive interactions. The model of fluid is developed by Brownian dynamics simulations without hydrodynamical interactions, and it is characterized by calculating its equation of state from the pair distribution function. Micromechanical properties, relative and intrinsic viscosity and freezing are discussed. Then, we include attractive forces such a Asakura-Oosawa depletion force or an empiric expression proposed by Grier and Hal (GH) for an anomalous electrostatic potential observed in confined and charged colloids. By using both potentials, viscosity is clearly increased, but when the GH potential is included, viscoelastic gel state is reached for intermediate values of surface concentration. Finally, we analyse the influence of the attractive potentials in the breaking-up by thermal fluctuations of linear chains formed by 2D particles, finding that the GH potential reduces the characteristical time at which the disks can be considered as disaggregated. In this work, we employ an experimental-like methodology for the study of a Brownian hard-disk fluid, providing a very useful link with experimental procedures.
Proceedings of SPIE | 2013
P. Domínguez-García; Flavio M. Mor; László Forró; Sylvia Jeney
Einstein’s stochastic description of the random movement of small objects in a fluid, i.e. Brownian motion, reveals to be quite different, when observed on short timescales. The limitations of Einstein’s theory with respect to particle inertia and hydrodynamic memory yield to the apparition of a colored frequency-dependent component in the spectrum of the thermal forces, which is called “the color of Brownian motion”. The knowledge of the characteristic timescales of the motion of a trapped microsphere motion in a Newtonian fluid allowed to develop a high-resolution calibration method for optical interferometry. Well-calibrated correlation quantities, such as the mean square displacement or the velocity autocorrelation function, permit to study the mechanical properties of fluids at high frequencies. These properties are estimated by microrheological calculations based on the theoretical relations between the complex mobility of the beads and the rheological properties of a complex fluid.
Archive | 2011
P. Domínguez-García; Miguel A. Rubio
The study of colloidal dispersions of micro-nano sized particles in a liquid is of great interest for industrial processes and technological applications. The understanding of the microstructure and fundamental properties of this kind of systems at microscopic level is also useful for biological and biomedical applications. However, a colloidal suspension must be placed somewhere and the dynamics of the micro-particles can be modified as a consequence of the confinement, even if we have a low-confinement system. The hydrodynamics interactions between particles and with the enclosure’s wall which contains the suspension are of extraordinary importance to understanding the aggregation, disaggregation, sedimentation or any interaction experienced by the microparticles. Aspects such as corrections of the diffusion coefficients because of a hydrodynamic coupling to the wall must be considered. Moreover, if the particles are electrically charged, new phenomena can appear related to electro-hydrodynamic coupling. Electro-hydrodynamic effects (Behrens & Grier (2001a;b); Squires & Brenner (2000)) may have a role in the dynamics of confined charged submicron-sized particles. For example, an anomalous attractive interaction has been observed in suspensions of confined charged particles (Grier & Han (2004); Han & Grier (2003); Larsen & Grier (1997)). The possible explanation of this observation could be related with the distribution of surface’s charges of the colloidal particles and the wall (Lian & Ma (2008); Odriozola et al. (2006)). This effect could be also related to an electrostatic repulsion with the charged quartz bottom wall or to a spontaneous macroscopic electric field observed on charged colloids (Rasa & Philipse (2004)). In this work, we are going to describe experiments performed by using magneto-rheological fluids (MRF), which consist (Rabinow (1948)) on suspensions formed by water or some organic solvent and micro or nano-particles that have a magnetic behaviour when a external magnetic field is applied upon them. Then, these particles interact between themselves forming aggregates with a shape of linear chains (Kerr (1990)) aligned in the direction of the magnetic field. When the concentration of particles inside the fluid is high enough, this microscopic behaviour turns to significant macroscopic 14