Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Eggenberger is active.

Publication


Featured researches published by P. Eggenberger.


Astronomy and Astrophysics | 2012

Grids of stellar models with rotation III. Models from 0.8 to 120 M at a metallicity Z = 0.002 ?

Sylvia Ekström; Cyril Georgy; P. Eggenberger; Georges Meynet; Nami Mowlavi; A. Wyttenbach; A. Granada; T. Decressin; Raphael Hirschi; Urs Frischknecht; Corinne Charbonnel; Andre Maeder

Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of galaxies, require complete and homogeneous sets of stellar models at different metallicities in order to be studied during the whole of cosmic history. We present here a first set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way. Methods. We computed a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z = 0.014, spanning a wide mass range from 0.8 to 120 M� . For each of the stellar masses considered, electronic tables provide data for 400 stages along the evolutionary track and at each stage, a set of 43 physical data are given. These grids thus provide an extensive and detailed data basis for comparisons with the observations. The rotating models start on the zero-age main sequence (ZAMS) with a rotation rate υini/υcrit = 0.4. The evolution is computed until the end of the central carbon-burning phase, the early asymptotic giant branch (AGB) phase, or the core helium-flash for, respectively, the massive, intermediate, and both low and very low mass stars. The initial abundances are those deduced by Asplund and collaborators, which best fit the observed abundances of massive stars in the solar neighbourhood. We update both the opacities and nuclear reaction rates, and introduce new prescriptions for the mass-loss rates as stars approach the Eddington and/or the critical velocity. We account for both atomic diffusion and magnetic braking in our low-mass star models. Results. The present rotating models provide a good description of the average evolution of non-interacting stars. In particular, they reproduce the observed main-sequence width, the positions of the red giant and supergiant stars in the Hertzsprung-Russell (HR) diagram, the observed surface compositions and rotational velocities. Very interestingly, the enhancement of the mass loss during


Nature | 2012

Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

P. G. Beck; Josefina Montalban; T. Kallinger; Joris De Ridder; Conny Aerts; R. A. García; S. Hekker; Marc-Antoine Dupret; Benoit Mosser; P. Eggenberger; D. Stello; Y. Elsworth; S. Frandsen; Fabien Carrier; M. Hillen; M. Gruberbauer; Joergen Christensen-Dalsgaard; A. Miglio; M. Valentini; Timothy R. Bedding; Hans Kjeldsen; Forrest R. Girouard; Jennifer R. Hall; Khadeejah A. Ibrahim

When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star’s radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected ‘mixed modes’. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.


Astronomy and Astrophysics | 2012

Grids of stellar models with rotation - II. WR populations and supernovae/GRB progenitors at Z = 0.014

Cyril Georgy; Sylvia Ekström; Georges Meynet; Philip Massey; Emily M. Levesque; Raphael Hirschi; P. Eggenberger; Andre Maeder

Context. In recent years, many very interesting observations have appeared concerning the positions of Wolf-Rayet (WR) stars in the Hertzsprung-Russell diagram (HRD), the number ratios of WR stars, the nature of Type Ibc supernova (SN) progenitors, long and soft gamma ray bursts (LGRB), and the frequency of these various types of explosive events. These observations represent key constraints on massive star evolution. Aims. We study, in the framework of the single-star evolutionary scenario, how rotation modifies the evolution of a given initial mass star towards the WR phase and how it impacts the rates of Type Ibc SNe. We also discuss the initial conditions required to obtain collapsars and LGRB. Methods. We used a recent grid of stellar models computed with and without rotation to make predictions concerning the WR populations and the frequency of different types of core-collapse SNe. Current rotating models were checked to provide good fits to the following features: solar luminosity and radius at the solar age, main-sequence width, red-giant and red-supergiant (RSG) positions in the HRD, surface abundances, and rotational velocities. Results. Rotating stellar models predict that about half of the observed WR stars and at least half of the Type Ibc SNe may be produced through the single-star evolution channel. Rotation increases the duration of the WNL and WNC phases, while reducing those of the WNE and WC phases, as was already shown in previous works. Rotation increases the frequency of Type Ic SNe. The upper –


Astronomy and Astrophysics | 2014

Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

S. Deheuvels; G. Doğan; M. J. Goupil; T. Appourchaux; O. Benomar; H. Bruntt; T. L. Campante; Luca Casagrande; T. Ceillier; G. R. Davies; P. De Cat; J. N. Fu; R. A. García; A. Lobel; B. Mosser; Daniel Reese; C. Regulo; Jesper Schou; T. Stahn; A. O. Thygesen; X. H. Yang; W. J. Chaplin; J. Christensen-Dalsgaard; P. Eggenberger; Laurent Gizon; S. Mathis; J. Molenda-Żakowicz; Marc H. Pinsonneault

Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question.Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts.Methods. We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars.Results. We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand.Conclusions. We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches.


Astronomy and Astrophysics | 2012

Thermohaline instability and rotation-induced mixing - III. Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars of various metallicities

N. Lagarde; T. Decressin; Corinne Charbonnel; P. Eggenberger; Ana Palacios

Context. The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. Aims: We evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the zero age main sequence to the thermally pulsating asymptotic giant branch to distinguish stellar populations. Methods: We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range from 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid, we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ... ), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power νmax, the maximal amplitude Amax, the asymptotic period spacing of g-modes, and different acoustic radii. Results: We discuss a signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified using spectroscopic studies cannot be characterized by the global seismic parameters studied here. However, we cannot exclude that individual mode frequencies or other well chosen asteroseismic quantities might help us to constrain this mixing. Results tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A108


The Astrophysical Journal | 2010

A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

T. S. Metcalfe; M. J. P. F. G. Monteiro; M. J. Thompson; J. Molenda-Żakowicz; T. Appourchaux; W. J. Chaplin; G. Doğan; P. Eggenberger; Timothy R. Bedding; H. Bruntt; O. L. Creevey; P.-O. Quirion; D. Stello; Alfio Bonanno; V. Silva Aguirre; Sarbani Basu; Lisa Esch; Ning Gai; M. Di Mauro; Alexander G. Kosovichev; Irina N. Kitiashvili; J. C. Suárez; Andrés Moya; L. Piau; R. A. García; J. P. Marques; Antonio Frasca; K. Biazzo; S. G. Sousa; S. Dreizler

The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties.


The Astrophysical Journal | 2012

Asteroseismology of the solar analogs 16 Cyg A and B from Kepler observations

T. S. Metcalfe; W. J. Chaplin; T. Appourchaux; R. A. García; Sarbani Basu; I. M. Brandão; O. L. Creevey; S. Deheuvels; G. Doğan; P. Eggenberger; C. Karoff; A. Miglio; D. Stello; M. Yıldız; Z. Çelik; H. M. Antia; O. Benomar; R. Howe; C. Regulo; D. Salabert; Thorsten Stahn; Timothy R. Bedding; G. R. Davies; Y. Elsworth; Laurent Gizon; S. Hekker; S. Mathur; B. Mosser; Steve Bryson; Martin Still

The evolved solar-type stars 16 Cyg A and B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A and B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components, respectively, including a clear detection of octupole (l = 3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t = 6.8 ± 0.4 Gyr) and initial composition (Z i = 0.024 ± 0.002, Y i = 0.25 ± 0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.


Astronomy and Astrophysics | 2012

Angular momentum transport in stellar interiors constrained by rotational splittings of mixed modes in red giants

P. Eggenberger; Josefa Montalban Iglesias; A. Miglio

Context. Recent asteroseismic observations have led to the determination of rotational frequency splittings for � = 1 mixed modes in red giants. Aims. We investigate how these observed splittings can constrain the modelling of the physical processes transporting angular momentum in stellar interiors. Methods. We first compare models including a comprehensive treatment of shellular rotation only, with the rotational splittings observed for the red giant KIC 8366239. We then study how these asteroseismic constraints can give us information about the efficiency of an additional mechanism for the internal transport of angular momentum. This is done by computing rotating models of KIC 8366239 that include a constant viscosity corresponding to this physical process, in addition to the treatment of shellular rotation. Results. We find that models of red giant stars including shellular rotation only predict steep rotation profiles, which are incompatible with the measurements of rotational splittings in the red giant KIC 8366239. Meridional circulation and shear mixing alone are found to produce an insufficient internal coupling so that an additional mechanism for the internal transport of angular momentum is needed during the post-main sequence evolution. We show that the viscosity νadd corresponding to this mechanism is strongly constrained to be νadd = 3 × 10 4 cm 2 s −1 thanks to the observed ratio of the splittings for modes in the wings to those at the centre of the dipole forests. Such a value of viscosity may suggest that the same unknown physical process is at work during the main sequence and the post-main sequence evolution.


Astronomy and Astrophysics | 2013

Populations of rotating stars - I. Models from 1.7 to 15 M⊙ at Z = 0.014, 0.006, and 0.002 with Ω/Ωcrit between 0 and 1

Cyril Georgy; Sylvia Ekström; A. Granada; Georges Meynet; Nami Mowlavi; P. Eggenberger; Andre Maeder

B-type stars are known to rotate at various velocities, including very fast rotators near the critical velocity as the Be stars. In this paper, we provide stellar models covering the mass range between 1.7 to 15 Msun, which includes the typical mass of known Be stars, at Z = 0.014, 0.006, and 0.002 and for an extended range of initial velocities on the zero-age main sequence. We used the Geneva stellar-evolution code, including the effects of shellular rotation, with a numerical treatment that has been improved so the code can precisely track the variation in the angular momentum content of the star as it changes under the influence of radiative winds and/or mechanical mass loss. We discuss the impact of the initial rotation rate on the tracks in the Hertzsprung-Russell diagram, the main-sequence (MS) lifetimes, the evolution of the surface rotation and abundances, as well as on the ejected masses of various isotopes. Among the new results obtained from the present grid we find that 1) fast-rotating stars with initial masses around 1.7 Msun present at the beginning of the core hydrogen-burning phase quite small convective cores with respect to their slowly rotating counterparts. This fact may be interesting to keep in mind in the framework of the asteroseismic studies of such stars. 2) The contrast between the core and surface angular velocity is higher in slower rotating stars. The values presently obtained are in agreement with the very few values obtained for B-type stars from asteroseismology. 3) At Z = 0.002, the stars in the mass range of 1.7 to 3 Msun with a mean velocity on the MS of the order of 150 km/s show N/H enhancement superior to 0.2 dex at mid-MS, and superior to 0.4 dex at the end of the MS phase. At solar metallicity the corresponding values are below 0.2 dex at any time in the MS.


Astronomy and Astrophysics | 2011

Massive star models with magnetic braking

Georges Meynet; P. Eggenberger; André Maeder

Magnetic fields at the surface of a few early-type stars have been directly detected. These fields have magnitudes between a few hundred G up to a few kG. In one case, evidence of magnetic braking has been found. We investigate the effects of magnetic braking on the evolution of rotating (

Collaboration


Dive into the P. Eggenberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Miglio

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Fabien Carrier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge