P. Fleck
Takeda Pharmaceutical Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Fleck.
The New England Journal of Medicine | 2013
William B. White; Christopher P. Cannon; Simon Heller; Steven E. Nissen; Richard M. Bergenstal; George L. Bakris; Alfonso Perez; P. Fleck; Cyrus R. Mehta; Stuart Kupfer; Craig A. Wilson; William C. Cushman; Faiez Zannad
BACKGROUND To assess potentially elevated cardiovascular risk related to new antihyperglycemic drugs in patients with type 2 diabetes, regulatory agencies require a comprehensive evaluation of the cardiovascular safety profile of new antidiabetic therapies. We assessed cardiovascular outcomes with alogliptin, a new inhibitor of dipeptidyl peptidase 4 (DPP-4), as compared with placebo in patients with type 2 diabetes who had had a recent acute coronary syndrome. METHODS We randomly assigned patients with type 2 diabetes and either an acute myocardial infarction or unstable angina requiring hospitalization within the previous 15 to 90 days to receive alogliptin or placebo in addition to existing antihyperglycemic and cardiovascular drug therapy. The study design was a double-blind, noninferiority trial with a prespecified noninferiority margin of 1.3 for the hazard ratio for the primary end point of a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. RESULTS A total of 5380 patients underwent randomization and were followed for up to 40 months (median, 18 months). A primary end-point event occurred in 305 patients assigned to alogliptin (11.3%) and in 316 patients assigned to placebo (11.8%) (hazard ratio, 0.96; upper boundary of the one-sided repeated confidence interval, 1.16; P<0.001 for noninferiority). Glycated hemoglobin levels were significantly lower with alogliptin than with placebo (mean difference, -0.36 percentage points; P<0.001). Incidences of hypoglycemia, cancer, pancreatitis, and initiation of dialysis were similar with alogliptin and placebo. CONCLUSIONS Among patients with type 2 diabetes who had had a recent acute coronary syndrome, the rates of major adverse cardiovascular events were not increased with the DPP-4 inhibitor alogliptin as compared with placebo. (Funded by Takeda Development Center Americas; EXAMINE ClinicalTrials.gov number, NCT00968708.).
The Lancet | 2015
Faiez Zannad; Christopher P. Cannon; William C. Cushman; George L. Bakris; Venu Menon; Alfonso Perez; P. Fleck; Cyrus R. Mehta; Stuart Kupfer; Craig A. Wilson; Hung Lam; William B. White
BACKGROUND The EXAMINE trial showed non-inferiority of the DPP-4 inhibitor alogliptin to placebo on major adverse cardiac event (MACE) rates in patients with type 2 diabetes and recent acute coronary syndromes. Concerns about excessive rates of in-hospital heart failure in another DPP-4 inhibitor trial have been reported. We therefore assessed hospital admission for heart failure in the EXAMINE trial. METHODS Patients with type 2 diabetes and an acute coronary syndrome event in the previous 15-90 days were randomly assigned alogliptin or placebo plus standard treatment for diabetes and cardiovascular disease prevention. The prespecified exploratory extended MACE endpoint was all-cause mortality, non-fatal myocardial infarction, non-fatal stroke, urgent revascularisation due to unstable angina, and hospital admission for heart failure. The post-hoc analyses were of cardiovascular death and hospital admission for heart failure, assessed by history of heart failure and brain natriuretic peptide (BNP) concentration at baseline. We also assessed changes in N-terminal pro-BNP (NT-pro-BNP) from baseline to 6 months. This study is registered with ClinicalTrials.gov, number NCT00968708. FINDINGS 5380 patients were assigned to alogliptin (n=2701) or placebo (n=2679) and followed up for a median of 533 days (IQR 280-751). The exploratory extended MACE endpoint was seen in 433 (16·0%) patients assigned to alogliptin and in 441 (16·5%) assigned to placebo (hazard ratio [HR] 0·98, 95% CI 0·86-1·12). Hospital admission for heart failure was the first event in 85 (3·1%) patients taking alogliptin compared with 79 (2·9%) taking placebo (HR 1·07, 95% CI 0·79-1·46). Alogliptin had no effect on composite events of cardiovascular death and hospital admission for heart failure in the post hoc analysis (HR 1·00, 95% CI 0·82-1·21) and results did not differ by baseline BNP concentration. NT-pro-BNP concentrations decreased significantly and similarly in the two groups. INTERPRETATION In patients with type 2 diabetes and recent acute coronary syndromes, alogliptin did not increase the risk of heart failure outcomes. FUNDING Takeda Development Center Americas.
Diabetes Care | 2008
Ralph A. DeFronzo; P. Fleck; Craig A. Wilson; Qais Mekki
OBJECTIVE—To evaluate the dipeptidyl peptidase-4 (DPP-4) inhibitor alogliptin in drug-naïve patients with inadequately controlled type 2 diabetes. RESEARCH DESIGN AND METHODS—This double-blind, placebo-controlled, multicenter study included 329 patients with poorly controlled diabetes randomized to once-daily treatment with 12.5 mg alogliptin (n = 133), 25 mg alogliptin (n = 131), or placebo (n = 65) for 26 weeks. Primary efficacy end point was mean change from baseline in A1C at the final visit. RESULTS—At week 26, mean change in A1C was significantly greater (P < 0.001) for 12.5 mg (−0.56%) and 25 mg (−0.59%) alogliptin than placebo (−0.02%). Reductions in fasting plasma glucose were also greater (P < 0.001) in alogliptin-treated patients than in those receiving placebo. Overall, incidences of adverse events (67.4–70.3%) and hypoglycemia (1.5–3.0%) were similar across treatment groups. CONCLUSIONS—Alogliptin monotherapy was well tolerated and significantly improved glycemic control in patients with type 2 diabetes, without raising the incidence of hypoglycemia.
International Journal of Clinical Practice | 2009
M. A. Nauck; G. C. Ellis; P. Fleck; Craig A. Wilson; Qais Mekki
Aims: To evaluate the efficacy and safety of alogliptin, a new dipeptidyl peptidase‐4 inhibitor, for 26 weeks at once‐daily doses of 12.5 and 25 mg in combination with metformin in patients whose HbA1c levels were inadequately controlled on metformin alone.
Diabetes, Obesity and Metabolism | 2009
Julio Rosenstock; M. S. Rendell; J. L. Gross; P. Fleck; Craig A. Wilson; Qais Mekki
Aims: To assess the efficacy and safety of alogliptin added to insulin in patients with type 2 diabetes inadequately controlled with insulin alone or combined with metformin.
Diabetes, Obesity and Metabolism | 2009
Richard E. Pratley; M. S. Kipnes; P. Fleck; Craig A. Wilson; Qais Mekki
Aim: To evaluate the efficacy and safety of alogliptin, a potent and highly selective dipeptidyl peptidase‐4 (DPP‐4) inhibitor, in combination with glyburide in patients with type 2 diabetes inadequately controlled by sulphonylurea monotherapy.
Current Medical Research and Opinion | 2009
Richard E. Pratley; Jane E.B. Reusch; P. Fleck; Craig A. Wilson; Qais Mekki
ABSTRACT Objectives: To evaluate the efficacy and safety of alogliptin in patients with type 2 diabetes inadequately controlled by therapy with a thiazolidinedione (TZD). Research design and methods: In a multicenter, double-blind, placebo-controlled clinical study, 493 patients 18–80 years old with inadequate glycemic control after stabilization (i.e., glycosylated hemoglobin [HbA1c] 7.0–10.0%) despite ongoing treatment with a TZD were randomly assigned (2:2:1) to treatment with pioglitazone plus alogliptin 12.5 mg, alogliptin 25 mg or placebo once daily. Concomitant therapy with metformin or sulfonylurea at prestudy doses was permitted. Main outcome measures: The primary efficacy endpoint was change in HbA1c from baseline to Week 26. Secondary endpoints included changes in fasting plasma glucose (FPG) and body weight, and incidences of marked hyperglycemia (FPG ≥ 200 mg/dL [11.10 mmol/L]) and rescue for hyperglycemia. Results: Least squares (LS) mean change in HbA1c was significantly (p < 0.001) greater for alogliptin 12.5 mg (−0.66%) or 25 mg (−0.80%) than for placebo (−0.19%). A significantly (p ≤ 0.016) larger proportion of patients achieved HbA1c ≤ 7% with alogliptin 12.5 mg (44.2%) or 25 mg (49.2%) than with placebo (34.0%). LS mean decreases in FPG were significantly (p = 0.003) greater with alogliptin 12.5 mg (−19.7 mg/dL [−1.09 mmol/L]) or 25 mg (−19.9 mg/dL [−1.10 mmol/L]) than with placebo (−5.7 mg/dL [−0.32 mmol/L]). The percentage of patients with marked hyperglycemia was significantly (p < 0.001) lower for alogliptin (≤25.0%) than placebo (44.3%). The incidences of overall adverse events and hypoglycemia were similar across treatment groups, but cardiac events occurred more often with active treatment than placebo. Conclusions: Addition of alogliptin to pioglitazone therapy significantly improved glycemic control in patients with type 2 diabetes and was generally well tolerated. The study did not evaluate the effect of combination therapy on long-term clinical outcomes and safety. Clinical trial registration: NCT00286494, clinicaltrials.gov.
Clinical Therapeutics | 2008
Paul Covington; Ronald J. Christopher; Michael Davenport; P. Fleck; Qais Mekki; Elisabeth R. Wann; Aziz Karim
BACKGROUND Alogliptin is a highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes (T2D). OBJECTIVES This study was conducted to evaluate the pharmacokinetic (PK), pharmacodynamic (PD), and tolerability profiles and explore the efficacy of multiple oral doses of alogliptin in patients with T2D. METHODS In this randomized, double-blind, placebo-controlled, parallel-group study, patients with T2D between the ages of 18 and 75 years were assigned to receive a single oral dose of alogliptin 25, 100, or 400 mg or placebo (4:4:4:3 ratio) once daily for 14 days. PK profiles and plasma DPP-4 inhibition were assessed on days 1 and 14. Tolerability was monitored based on adverse events (AEs) and clinical assessments. Efficacy end points included 4-hour postprandial plasma glucose (PPG) and insulin concentrations, and fasting glycosylated hemoglobin (HbA(1c)), C-peptide, and fructosamine values. RESULTS Of 56 enrolled patients (57% women; 93% white; mean age, 55.6 years; mean weight, 89.8 kg; mean body mass index, 31.7 kg/m(2)), 54 completed the study. On day 14, the median T(max) was ~1 hour and the mean t(1/2) was 12.5 to 21.1 hours across all alogliptin doses. Alogliptin was primarily excreted renally (mean fraction of drug excreted in urine from 0 to 72 hours after dosing, 60.8%-63.4%). On day 14, mean peak DPP-4 inhibition ranged from 94% to 99%, and mean inhibition at 24 hours after dosing ranged from 82% to 97% across all alogliptin doses. Significant decreases from baseline to day 14 were observed in mean 4-hour PPG after breakfast with alogliptin 25 mg (-32.5 mg/dL; P=0.008), 100 mg (-37.2; P=0.002), and 400 mg (-65.6 mg/dL; P<0.001) compared with placebo (+8.2 mg/dL). Significant decreases in mean 4-hour PPG were also observed for alogliptin 25, 100, and 400 mg compared with placebo after lunch (-15.8 mg/dL [P=0.030]; -29.2 mg/dL [P=0.002]; -27.1 mg/dL [P=0.009]; and +14.3 mg/dL, respectively) and after dinner (-21.9 mg/dL [P=0.017]; -39.7 mg/dL [P<0.001]; -35.3 mg/dL [P=0.003]; and +12.8 mg/dL). Significant decreases in mean HbA(1c) from baseline to day 15 were observed for alogliptin 25 mg (-0.22%; P=0.044), 100 mg (-0.40%; P<0.001), and 400 mg (-0.28%; P=0.018) compared with placebo (+0.05%). Significant decreases in mean fructosamine concentrations from baseline to day 15 were observed for alogliptin 100 mg (-25.6 micromol/L; P=0.001) and 400 mg (-19.9 micromol/L; P=0.010) compared with placebo (+15.0 micromol/L). No statistically significant changes were noted in mean 4-hour postprandial insulin or mean fasting C-peptide. No serious AEs were reported, and no patients discontinued the study because of an AE. The most commonly reported AEs for alogliptin 400 mg were headache in 6 of 16 patients (compared with 0/15 for alogliptin 25 mg, 1/14 for alogliptin 100 mg, and 3/11 for placebo), dizziness in 4 of 16 patients (compared with 1/15, 2/14, and 1/11, respectively), and constipation in 3 of 16 patients (compared with no patients in any other group). No other individual AE was reported by >2 patients receiving the 400-mg dose. Apart from dizziness, no individual AE was reported by >1 patient receiving either the 25- or 100-mg dose. CONCLUSIONS In these adult patients with T2D, alogliptin inhibited plasma DPP-4 activity and significantly decreased PPG levels. The PK and PD profiles of multiple doses of alogliptin in this study supported use of a once-daily dosing regimen. Alogliptin was generally well tolerated, with no dose-limiting toxicity.
Diabetes, Obesity and Metabolism | 2013
William B. White; R. Pratley; P. Fleck; M. Munsaka; M. Hisada; Craig A. Wilson; Venu Menon
As there have been concerns that some classes or agents for the treatment of type 2 diabetes may increase CV risk, we evaluated the cardiovascular profile of the dipeptidyl peptidase‐4 inhibitor alogliptin.
Clinical Therapeutics | 2008
Ronald J. Christopher; Paul Covington; Michael Davenport; P. Fleck; Qais Mekki; Elisabeth R. Wann; Aziz Karim
BACKGROUND Alogliptin is a highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes. OBJECTIVE This study was conducted to characterize the pharmacokinetics, pharmacodynamics, and tolerability of single oral doses of alogliptin in healthy male subjects. METHODS This was a randomized, double-blind, placebo-controlled study in which healthy, nonobese male subjects between the ages of 18 and 55 years were assigned to 1 of 6 cohorts: alogliptin 25, 50, 100, 200, 400, or 800 mg. One subject in each cohort received placebo. An ascending-dose strategy was used, in which each cohort received its assigned dose only after review of the safety data from the previous cohort. Blood and urine were collected over 72 hours after dosing for pharmacokinetic analysis and determination of plasma DPP-4 inhibition and active glucagon-like peptide -1(GLP-1) concentrations. RESULTS Thirty-six subjects (66 per cohort) were enrolled and completed the study (29/36 [81% ] white; mean age, 26.6 years; mean weight, 76.0 kg). Alogliptin was rapidly absorbed (median T(max), 1-2 hours) and eliminated slowly (mean t(1/2), 12.4-21.4 hours), primarily via urinary excretion (mean fraction of drug excreted in urine from 0 to 72 hours after dosing, 60%-71%). C(max) and AUC(0-infinity) increased dose proportionally over the range from 25 to 100 mg. The metabolites M-I (N-demethylated) and M-II (N-acetylated) accounted for <2% and <6%, respectively, of alogliptin concentrations in plasma and urine. Across alogliptin doses, mean peak DPP-4 inhibition ranged from 93% to 99%, and mean inhibition at 24 hours after dosing ranged from 74% to 97%. Exposure to active GLP-1 was 2- to 4-fold greater for all alogliptin doses compared with placebo; no dose response was apparent. Hypoglycemia (asymptomatic) was reported in 5 subjects (11 receiving alogliptin 50 mg, 2 receiving alogliptin 200 mg, 1 receiving alogliptin 400 mg, 1 receiving placebo). Other adverse events were reported in 1 subject each: dizziness (alogliptin 100 mg), syncope (alogliptin 200 mg), constipation (alogliptin 200 mg), viral infection (alogliptin 400 mg), hot flush (placebo), and nausea (placebo). CONCLUSION In these healthy male subjects, alogliptin at single doses up to 800 mg inhibited plasma DPP-4 activity, increased active GLP-1, and was generally well tolerated, with no dose-limiting toxicity.