P. G. Isar
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. G. Isar.
Journal of Cosmology and Astroparticle Physics | 2014
W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; B. Fuchs; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar; K.-H. Kampert; D. Kang; O. Krömer
Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 1017 eV and zenith angles smaller than 45o, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ?50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c 2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, Xmax, better than 30 g/c 2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.
Astronomy and Astrophysics | 2008
A. Nigl; W.D. Apel; J.C. Arteaga; T. Asch; J. Auffenberg; F. Badea; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; M. Brüggemann; P. Buchholz; S. Buitink; H. R. Butcher; E. Cantoni; A. Chiavassa; F. Cossavella; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; H. Gemmeke; P. L. Ghia; R. Glasstetter; C. Grupen
Aims. We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (10 17 eV). Methods. We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. The radio data are digitally beam-formed before the spectra are determined by sub-band filtering and fast Fourier transformation. Results. The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential Eν = K · exp (ν/MHz/β )a ndβ = −0.017 ± 0.004, or alternatively, with a power law � ν = K · ν α and a spectral index of α = −1 ± 0.2. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). For the analyzed sample of LOPES events, we do not find any significant dependence of the spectral slope on the electric field amplitude, the azimuth angle, the zenith angle, the curvature radius, nor on the average distance of the antennae from the shower core position. But one of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of 110 ns and a spectral slope of α = −3.6. Conclusions. We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined by the shower disc thickness. We conclude that a broader bandwidth, larger collecting area, and longer baselines, as will be provided by LOFAR, are necessary to further investigate the relation of the coherence, pulse length, and spectral slope of cosmic ray air showers.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012
F.G. Schröder; W.D. Apel; J.C. Arteaga; T. Asch; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; P. Buchholz; S. Buitink; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; P. Doll; R. Engel; H. Falcke; M. Finger; D. Fuhrmann; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege
Abstract Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.
arXiv: Astrophysics | 2009
P.L. Biermann; J.K. Becker; L. Caramete; A. Curutiu; R. Engel; H. Falcke; László Á. Gergely; P. G. Isar; I. C. Maris; A. Meli; K.-H. Kampert; T. Stanev; O. Tascau; Christian Zier
The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.
Astroparticle Physics | 2013
W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; B. Fuchs; D. Fuhrmann; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar; K.-H. Kampert; D. Kang
Abstract Cosmic ray air showers emit radio pulses at MHz frequencies, which can be measured with radio antenna arrays – like LOPES at the Karlsruhe Institute of Technology in Germany. To improve the understanding of the radio emission, we test theoretical descriptions with measured data. The observables used for these tests are the absolute amplitude of the radio signal, and the shape of the radio lateral distribution. We compare lateral distributions of more than 500 LOPES events with two recent and public Monte Carlo simulation codes, REAS 3.11 and CoREAS (v 1.0). The absolute radio amplitudes predicted by REAS 3.11 are in good agreement with the LOPES measurements. The amplitudes predicted by CoREAS are lower by a factor of two, and marginally compatible with the LOPES measurements within the systematic scale uncertainties. In contrast to any previous versions of REAS, REAS 3.11 and CoREAS now reproduce the shape of the measured lateral distributions correctly. This reflects a remarkable progress compared to the situation a few years ago, and it seems that the main processes for the radio emission of air showers are now understood: The emission is mainly due to the geomagnetic deflection of the electrons and positrons in the shower. Less important but not negligible is the Askaryan effect (net charge variation). Moreover, we confirm that the refractive index of the air plays an important role, since it changes the coherence conditions for the emission: Only the new simulations including the refractive index can reproduce rising lateral distributions which we observe in a few LOPES events. Finally, we show that the lateral distribution is sensitive to the energy and the mass of the primary cosmic ray particles.
Journal of Physics G | 2009
W.D. Apel; J. C. Arteaga; F. Badea; K. Bekk; M. Bertaina; J. Blümer; H. Bozdog; I.M. Brancus; M. Brüggemann; P. Buchholz; E. Cantoni; A. Chiavassa; F. Cossavella; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; J. Engler; M. Finger; D. Fuhrmann; P. L. Ghia; H.J. Gils; R. Glasstetter; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; T. Huege; P. G. Isar
Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.
Advances in Space Research | 2011
W.D. Apel; J.C. Arteaga; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; P. Buchholz; S. Buitink; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; M. Ender; R. Engel; H. Falcke; M. Finger; D. Fuhrmann; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege
Abstract Relativistic, charged particles present in extensive air showers (EAS) lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong electric fields in the atmosphere, which can lead to further multiplication and acceleration of the charged particles and thus have influence on the form and strength of the radio emission. For a reliable energy reconstruction of the primary cosmic ray by means of the measured radio signal it is very important to understand how electric fields affect the radio emission. In addition, lightning strikes are a prominent source of broadband radio emissions that are visible over very long distances. This, on the one hand, causes difficulties in the detection of the much lower signal of the air shower. On the other hand the recorded signals can be used to study features of the lightning development. The detection of cosmic rays via the radio emission and the influence of strong electric fields on this detection technique is investigated with the LOPES experiment in Karlsruhe, Germany. The important question if a lightning is initiated by the high electron density given at the maximum of a high-energy cosmic-ray air shower is also investigated, but could not be answered by LOPES. But, these investigations exhibit the capabilities of EAS radio antenna arrays for lightning studies. We report about the studies of LOPES measured radio signals of air showers taken during thunderstorms and give a short outlook to new measurements dedicated to search for correlations of lightning and cosmic rays.
Physics Letters B | 2016
W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; P. Bezyazeekov; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; N. M. Budnev; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; O. Fedorov; B. Fuchs; H. Gemmeke; O. Gress; C. Grupen; A. Haungs; D. Heck; R. Hiller; J.R. Hörandel; A. Horneffer; D. Huber
Abstract The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100 PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10 % – limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.
arXiv: High Energy Astrophysical Phenomena | 2013
F.G. Schröder; W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; K. Bekk; M. Bertaina; P. L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; B. Fuchs; D. Fuhrmann; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar; K.-H. Kampert; D. Kang
LOPES is a digital antenna array at the Karlsruhe Institute of Technology, Germany, for cosmic-ray air-shower measurements. Triggered by the co-located KASCADE-Grande air-shower array, LOPES detects the radio emission of air showers via digital radio interferometry. We summarize the status of LOPES and recent results. In particular, we present an update on the reconstruction of the primary-particle properties based on almost 500 events above 100PeV. With LOPES, the arrival direction can be reconstructed with a precision of at least 0.65°, and the energy with a precision of at least 20%, which, however, does not include systematic uncertainties on the absolute energy scale. For many particle and astrophysics questions the reconstruction of the atmospheric depth of the shower maximum, Xmax, is important, since it yields information on the type of the primary particle and its interaction with the atmosphere. Recently, we found experimental evidence that the slope of the radio lateral distribution is indeed s...
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012
W.D. Apel; J.C. Arteaga; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; P. Buchholz; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; M. Finger; B. Fuchs; D. Fuhrmann; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar
To better understand the radio signal emitted by extensive air-showers and to further develop the radio detection technique of high-energy cosmic rays, the LOPES experiment was reconfigured to LOPES-3D. LOPES-3D is able to measure all three vectorial components of the electric field of radio emission from cosmic ray air showers. The additional measurement of the vertical component ought to increase the reconstruction accuracy of primary cosmic ray parameters like direction and energy, provides an improved sensitivity to inclined showers, and will help to validate simulation of the emission mechanisms in the atmosphere. LOPES-3D will evaluate the feasibility of vectorial measurements for large scale applications. In order to measure all three electric field components directly, a tailor-made antenna type (tripoles) was deployed. The change of the antenna type necessitated new pre-amplifiers and an overall recalibration. The reconfiguration and the recalibration procedure are presented and the operationality of LOPES-3D is demonstrated.