Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Gladders is active.

Publication


Featured researches published by P. Gladders.


Journal of the Royal Society Interface | 2008

Range and severity of a plant disease increased by global warming

N. Evans; Andreas Baierl; Mikhail A. Semenov; P. Gladders; Bruce D.L. Fitt

Climate change affects plants in natural and agricultural ecosystems throughout the world but little work has been done on the effects of climate change on plant disease epidemics. To illustrate such effects, a weather-based disease forecasting model was combined with a climate change model predicting UK temperature and rainfall under high- and low-carbon emissions for the 2020s and 2050s. Multi-site data collected over a 15-year period were used to develop and validate a weather-based model forecasting severity of phoma stem canker epidemics on oilseed rape across the UK. This was combined with climate change scenarios to predict that epidemics will not only increase in severity but also spread northwards by the 2020s. These results provide a stimulus to develop models to predict the effects of climate change on other plant diseases, especially in delicately balanced agricultural or natural ecosystems. Such predictions can be used to guide policy and practice in adapting to effects of climate change on food security and wildlife.


European Journal of Plant Pathology | 1999

Effects of Severity and Timing of Stem Canker (Leptosphaeria maculans) Symptoms on Yield of Winter Oilseed Rape (Brassica napus) in the UK

Yilin Zhou; Bruce D.L. Fitt; S.J. Welham; P. Gladders; C.E. Sansford; Jon S. West

The relationships between yield loss and incidence (% plants with stems affected) or severity (mean stem score, 0–4 scale) of stem canker in winter oilseed rape were analysed using data from experiments at Rothamsted in 1991/92, Withington in 1992/93, Boxworth in 1993/94 and Rothamsted in 1997/98. Critical point models and area under disease progress curve (AUDPC) models were better than multiple point models for describing relationships between yield (t ha−1) and incidence or severity of stem canker for the four experiments. Since yield is influenced by many factors other than disease, % yield loss was calculated and critical point models and AUDPC models relating % yield loss to stem canker were constructed. The critical point models for % yield loss on stem canker incidence for three of the four experiments were similar, but differed from that for Rothamsted in 1991/92. There were also no differences between models of % yield loss on AUDPC of both incidence and severity for these three experiments. Therefore, general models of % yield loss (L) against AUDPC of incidence (X) or severity (S) of stem canker from growth stages 4.8 to 6.4 were derived from the combined data sets for the three experiments: L=−0.76+0.0075X (R2=35%, p<0.001), L=0.26+0.53S (R2=37%, p<0.001). The relationships between % yield loss and % plants with different stem canker severity scores at different growth stages were also analysed; the greatest yield losses were generally associated with the largest severity scores, for plants assessed at the same crop growth stage, and were also associated with the early development of stem lesions. Further analyses showed that % yield loss was related to incidence or severity of both basal stem cankers and upper stem lesions in experiments at Boxworth in 1993/94 and at Rothamsted in 1997/98.


European Journal of Plant Pathology | 2005

Patterns of ascospore release in relation to phoma stem canker epidemiology in england (Leptosphaeria maculans) and poland (Leptosphaeria biglobosa)

Y. J. Huang; Bruce D.L. Fitt; Małgorzata Jędryczka; Sylwia Dakowska; Jonathan West; P. Gladders; J. M. Steed; Zi-Qin Li

Experiments over five growing seasons at Rothamsted (1998/99–2002/03), four seasons at Boxworth (1998/99, 1999/2000, 2001/02, 2002/03) in England (Leptosphaeria maculans) and three seasons (1998/99–2000/01) at Poznan in Poland (Leptosphaeria biglobosa) suggest that differences in the development of phoma stem canker epidemics between England and Poland relate to differences in weather patterns between the two countries. The duration of ascospore release was longer in England, where winter weather is mild and wet, than in Poland, where winters are cold and often with snow cover, but there was little difference between two sites in England (Rothamsted and Boxworth). Wetness provided by rainfall was essential for release of ascospores of both L. maculans in England and L. biglobosa in Poland. Temperature did not affect release of ascospores over the range 5–20 °C. Diurnal periodicity in release of ascospores of L. maculans in England and L. biglobosa in Poland was similar. The timing (date) of first release of ascospores of L. maculans or L. biglobosa in autumn was related to rainfall in August and September; with increasing rainfall the date was earlier. The incubation periods from first release of ascospores to first appearance of phoma leaf spots for both L. maculans in England and L. biglobosa in Poland, and from first leaf spots to first stem base canker in England, were described using a thermal time (degree-day) approximation.


European Journal of Plant Pathology | 2006

Frequency of avirulence alleles in field populations of Leptosphaeria maculans in Europe

Anna Stachowiak; Julia Olechnowicz; Małgorzata Jędryczka; Thierry Rouxel; Marie-Hélène Balesdent; Ingrid Happstadius; P. Gladders; A. O. Latunde-Dada; Neal Evans

This paper describes the first large-scale Europe-wide survey of avirulence alleles and races of Leptosphaeria maculans. Isolates were collected from the spring rape cultivar Drakkar, with no known genes for resistance against L. maculans, at six experimental sites across the main oilseed rape growing regions of Europe, including the UK, Germany, Sweden and Poland. Additionally in Poland isolates were collected from cv. Darmor, which has resistance gene, Rlm9. In total, 603 isolates were collected during autumn in 2002 (287 isolates from Germany and the UK) and 2003 (316 isolates from Poland and Sweden). The identity of alleles at eight avirulence loci was determined for these isolates. No isolates had the virulence allele avrLm6 and three virulence alleles (avrLm2, avrLm3 and avrLm9) were present in all isolates. The isolates were polymorphic for AvrLm1, AvrLm4, AvrLm5 and AvrLm7 alleles, with virulence alleles at AvrLm1 and AvrLm4 loci and avirulence alleles at AvrLm7 and AvrLm5 loci predominant in populations. Virulent avrLm7 isolates were found at only one site in Sweden. Approximately 90% of all isolates belonged to one of two races (combinations of avirulence alleles), Av5-6-7 (77% of isolates) or Av6-7 (12%). Eight races were identified, with four races at frequencies less than 1%. The study suggested that Rlm6 and Rlm7 are still effective sources of resistance against L. maculans in oilseed rape in Europe. The results are comparable to those of a similar survey done in France in autumn 2000 and 2001.


International Journal of Agricultural Sustainability | 2009

Controlling crop disease contributes to both food security and climate change mitigation

M. Mahmuti; Jon S. West; J. Watts; P. Gladders; Bruce D.L. Fitt

Global food security is threatened by crop diseases that account for average yield losses of 16 per cent, with the greatest losses experienced by subsistence farmers in the developing world. Climate change is exacerbating the threats to food security in such areas, emphasizing the need to increase food production in northern European countries such as the UK. However, the crops must be grown in such a way as to minimize greenhouse gas (GHG) emissions associated with their production. As an example, it is estimated that production of UK winter oilseed rape is associated with GHG of 3300 kg CO2 eq. ha−1 of crop and 834 kg CO2 eq. t−1 of seed yield, with 79 per cent of the GHG associated with the use of nitrogen fertilizer. Furthermore, it is estimated that control of diseases by use of fungicides in this UK oilseed rape is associated with a decrease in GHG of 100 kg CO2 eq. t−1 of seed. Winter oilseed rape cultivar disease resistance is associated with a decrease in GHG of 56 kg CO2 eq. t−1, although this figure is an underestimate. These results demonstrate how disease control in arable crops can make a contribution to both climate change mitigation and sustainable arable crop production to ensure global food security.


European Journal of Plant Pathology | 1999

Effects of temperature and wetness duration on infection of oilseed rape leaves by ascospores of Leptosphaeria maculans (stem canker)

J. E. Biddulph; Bruce D.L. Fitt; P. K. Leech; S.J. Welham; P. Gladders

In controlled environment experiments, ascospores of Leptosphaeria maculans (stem canker) infected oilseed rape (cv. Nickel) leaves and caused phoma leaf spots at temperatures from 8°C to 24°C and leaf wetness durations from 8 h to 72 h. The conditions that produced the greatest numbers of leaf spot lesions were a leaf wetness duration of 48 h at 20°C; numbers of lesions decreased with decreasing leaf wetness duration and increasing or decreasing temperature. At 20°C with 48 h of leaf wetness, it was estimated that one out of four spores infected leaves to cause a lesion whereas with 8 h of leaf wetness only one out of 300 spores caused a lesion. As temperature increased from 8°C to 20°C, the time from inoculation to the appearance of the first lesions (a measure of the incubation period) decreased from 15 to 5 days but leaf wetness duration affected the length of the incubation period only at sub-optimal temperatures. Analyses suggested that, within the optimal ranges, there was little effect of temperature or wetness duration on incubation period expressed as degree-days; the time until appearance of 50% of the lesions was ca. 145 degree-days. A linear regression of % leaves with lesions (Pl) (square-root transformed) on % plants with lesions (Pp) accounted for 93% of the variance: √Pl=1.31+0.061Pp. This relationship was also investigated in winter oilseed rape field experiments in unsprayed plots from October to April in 1995/96 (cv. Envol), 1996/97 (cv. Envol), 1997/98 (cvs Bristol and Capitol) and 1998/99 (cvs Apex, Bristol and Capitol) seasons. The linear regression of % leaves with lesions (square-root transformed) on % plants with lesions accounted for 90% of the variance and had a similar slope to the controlled environment relationship: √Pl=0.81+0.051Pp. These results were used to examine relationships between the development of phoma leaf spot on plants in winter oilseed rape crops, the incubation period of L. maculans and the occurrence of infection criteria (temperature, rainfall) in the autumns of 1996, 1997 and 1998.


European Journal of Plant Pathology | 2006

Dissemination of information about management strategies and changes in farming practices for the exploitation of resistance to Leptosphaeria maculans (phoma stem canker) in oilseed rape cultivars

P. Gladders; Neal Evans; S. Marcroft; X. Pinochet

The management of phoma stem canker (blackleg disease, caused by Leptosphaeria maculans) is an integral component of oilseed rape production. In this paper, we discuss the information about management strategies that is disseminated in Europe and Australia. New cultivars have been introduced with improved resistance to disease, but sometimes this resistance has been overcome as new races of the pathogen have emerged. When cultivars with single major gene resistance have been introduced into areas with high inoculum concentrations, significant economic damage has been caused by new races of L. maculans within 2–3 years. Quantitative or polygenic resistance has also been used successfully against stem canker and offers more durable disease resistance if plant breeders and farmers deploy this resistance more effectively. Strategies to improve the durability of resistance need to be developed and tested in practice. New information on the occurrence of virulence and avirulence genes in populations of Leptosphaeria maculans and modelling of the durability of resistance provide opportunities for plant breeders, specialist technical organisations, cooperatives, advisory services and farmers to collaborate and better exploit cultivar resistance. Changing economic and environmental factors influence cropping practices and, if to be considered successful, management strategies must show clear financial benefits. Technology transfer will need to address all aspects of managing stem canker and other diseases of oilseed rape and using effective written, verbal and electronic methods of communication.


Pest Management Science | 2011

Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production

David Hughes; Jonathan West; Simon D. Atkins; P. Gladders; Michael Jeger; Bruce D.L. Fitt

BACKGROUND The U.K. government has published plans to reduce U.K. agricultures greenhouse gas (GHG) emissions. At the same time, the goal of global food security requires an increase in arable crop yields. Foliar disease control measures such as fungicides have an important role in meeting both objectives. RESULTS It is estimated that U.K. winter barley production is associated with GHG emissions of 2770 kg CO2 eq. ha(-1) of crop and 355 kg CO2 eq. t(-1) of grain. Foliar disease control by fungicides is associated with decreases in GHG emissions of 42-60 kg CO2 eq. t(-1) in U.K. winter barley and 29-39 kg CO2 eq. t(-1) in U.K. spring barley. The sensitivity of these results to the impact of disease control on yield and to variant GHG emissions assumptions is presented. Fungicide treatment of the major U.K. arable crops is estimated to have directly decreased U.K. GHG emissions by over 1.5 Mt CO2 eq. in 2009. CONCLUSION Crop disease control measures such as fungicide treatment reduce the GHG emissions associated with producing a tonne of grain. As national demand for food increases, greater yields as a result of disease control also decrease the need to convert land from non-arable to arable use, which further mitigates GHG emissions.


Annals of Applied Biology | 1999

Epidemiology of Leptosphaeria maculans in relation to forecasting stem canker severity on winter oilseed rape in the UK

Jon S. West; J.E. Biddulph; Bruce D.L. Fitt; P. Gladders


Annals of Applied Biology | 2001

Agronomic and meteorological factors affecting the severity of leaf blotch caused by Mycosphaerella graminicola in commercial wheat crops in England

P. Gladders; N. D. Paveley; I.A. Barrie; N.V. Hardwick; M J Hims; Steve Langton; M.C. Taylor

Collaboration


Dive into the P. Gladders's collaboration.

Top Co-Authors

Avatar

Bruce D.L. Fitt

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.A. Turner

Food and Environment Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K.G. Sutherland

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongju Huang

University of Hertfordshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge