Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Gratier is active.

Publication


Featured researches published by P. Gratier.


Astrophysical Journal Supplement Series | 2015

The 2014 KIDA network for interstellar chemistry

Valentine Wakelam; Jean-Christophe Loison; Eric Herbst; B. Pavone; Astrid Bergeat; K. Beroff; M. Chabot; A. Faure; Daniele Galli; Wolf D. Geppert; Dieter Gerlich; P. Gratier; Nanase Harada; Kevin M. Hickson; Pascal Honvault; Stephen J. Klippenstein; S. D. Le Picard; G. Nyman; M. Ruaud; Stephan Schlemmer; Ian R. Sims; Dahbia Talbi; Jonathan Tennyson

Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reacti ...


Astronomy and Astrophysics | 2010

PACS and SPIRE photometer maps of M33: First results of the HERschel M33 Extended Survey (HERM33ES)

C. Kramer; C. Buchbender; E. M. Xilouris; M. Boquien; J. Braine; Daniela Calzetti; S. Lord; B. Mookerjea; G. Quintana-Lacaci; M. Relaño; G. J. Stacey; F. S. Tabatabaei; S. Verley; Susanne Aalto; S. Akras; Marcus W. Albrecht; S. Anderl; R. Beck; Frank Bertoldi; Francoise Combes; M. Dumke; S. Garcia-Burillo; M. Gonzalez; P. Gratier; R. Güsten; C. Henkel; F. P. Israel; B. Koribalski; Andreas A. Lundgren; J. Martin-Pintado

Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 mu m wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 mu m and 500 mu m using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 mu m). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K +/- 10 K. The temperature of the cold component drops significantly from similar to 24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.


Journal of Physics B | 2016

The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium

M. L. Dubernet; Bobby Antony; Y. A. Ba; Yu L. Babikov; Klaus Bartschat; V. Boudon; Bastiaan J. Braams; H. K. Chung; F. Daniel; F. Delahaye; G. Del Zanna; J. de Urquijo; Milan S. Dimitrijevic; A. Domaracka; M. Doronin; Brian J. Drouin; C. P. Endres; Alexander Fazliev; S. V. Gagarin; Iouli E. Gordon; P. Gratier; Ulrike Heiter; Christian Hill; D. Jevremović; C. Joblin; A. Kasprzak; E. Krishnakumar; G. Leto; P. A. Loboda; T. Louge

The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.


Astronomy and Astrophysics | 2012

Dust and gas power spectrum in M 33 (HERM33ES)

Francoise Combes; M. Boquien; C. Kramer; E. M. Xilouris; Frank Bertoldi; J. Braine; C. Buchbender; Daniela Calzetti; P. Gratier; F. P. Israel; B. Koribalski; S. Lord; G. Quintana-Lacaci; M. Relaño; M. Röllig; G. J. Stacey; F. S. Tabatabaei; R. P. J. Tilanus; F. F. S. van der Tak; P. van der Werf; S. Verley

Power spectra of deprojected images of late-type galaxies in gas or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as two power laws, a shallow one on large scales (larger than 500 pc) and a steeper one on small scales, with the break between the two corresponding to the line-of-sight thickness of the galaxy disk. The break separates the 3D behavior of the interstellar medium on small scales, controlled by star formation and feedback, from the 2D behavior on large scales, driven by density waves in the disk. The break between these two regimes depends on the thickness of the plane, which is determined by the natural self-gravitating scale of the interstellar medium. We present a thorough analysis of the power spectra of the dust and gas emission at several wavelengths in the nearby galaxy M 33. In particular, we use the recently obtained images at five wavelengths by PACS and SPIRE onboard Herschel. The wide dynamical range (2–3 dex in scale) of most images allows us to clearly determine the change in slopes from −1.5 to −4, with some variations with wavelength. The break scale increases with wavelength from 100 pc at 24 and 100 μm to 350 pc at 500 μm, suggesting that the cool dust lies in a thicker disk than the warm dust, perhaps because of star formation that is more confined to the plane. The slope on small scales tends to be steeper at longer wavelength, meaning that the warmer dust is more concentrated in clumps. Numerical simulations of an isolated late-type galaxy, rich in gas and with no bulge, such as M 33, are carried out to better interpret these observed results. Varying the star formation and feedback parameters, it is possible to obtain a range of power spectra, with two power-law slopes and breaks, that nicelybracket the data. The small-scale power-law does indeed reflect the 3D behavior of the gas layer, steepening strongly while the feedback smoothes the structures by increasing the gas turbulence. M 33 appears to correspond to a fiducial model with an SFR of ~ 0.7 M_⊙/yr, with 10% supernovae energy coupled to the gas kinematics.


Astronomy and Astrophysics | 2012

Cool and warm dust emission from M 33 (HerM33es)

E. M. Xilouris; F. S. Tabatabaei; M. Boquien; C. Kramer; C. Buchbender; Frank Bertoldi; S. Anderl; J. Braine; S. Verley; M. Relaño; G. Quintana-Lacaci; S. Akras; R. Beck; Daniela Calzetti; Francoise Combes; M. Gonzalez; P. Gratier; C. Henkel; F. P. Israel; B. S. Koribalski; S. Lord; B. Mookerjea; Erik Rosolowsky; G. J. Stacey; R. P. J. Tilanus; F. F. S. van der Tak; P. van der Werf

In the framework of the open-time key program “Herschel M 33 extended survey (HerM33es)”, we study the far-infrared emission from the nearby spiral galaxy M 33 in order to investigate the physical properties of the dust such as its temperature and luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 160, 250, 350, and 500 μm) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 μm and Spitzer-MIPS 24 and 70 μm data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the “cool” dust grains are heated to temperatures of between 11 K and 28 K, with the lowest temperatures being found in the outskirts of the galaxy and the highest ones both at the center and in the bright HII regions. The infrared/submillimeter total luminosity (5–1000 μm) is estimated to be 1.9 × 10^9 _(-4.4×10)^8^(+4.0×10)^8L_⊙. Fifty-nine percent of the total infrared/submillimeter luminosity of the galaxy is produced by the “cool” dust grains (~15 K), while the remaining 41% is produced by “warm” dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly higher at the center than the outer parts of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms), we find that the fraction of the emission from the disk in the mid-infrared (24 μm) is 21%, while it gradually rises up to 57% in the submillimeter (500 μm). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The “cool” dust inside the disk is heated to temperatures in a narrow range between 18 K and 15 K (going from the center to the outer parts of the galaxy).


Astronomy and Astrophysics | 2010

The molecular interstellar medium of the Local Group dwarf NGC 6822 - The molecular ISM of NGC 6822

P. Gratier; J. Braine; N. J. Rodriguez-Fernandez; F. P. Israel; Karl Schuster; N. Brouillet; E. Gardan

Do molecular clouds collapse to form stars at the same rate in all environments? In large spiral galaxies, the rate of transformation of H2 into stars varies little. However, the SFE in distant objects (z ∼ 1) is much higher than in the large spiral disks that dominate the local universe. Some small Local Group galaxies share at least some of the characteristics of intermediate-redshift objects, such as size or color. Recent work has suggested that the star formation efficiency (SFE, defined as the star formation rate per unit H2 )i n local Dwarf galaxies may be as high as in the distant objects. A fundamental difficulty in these studies is the independent measure of the H2 mass in metal-deficient environments. At 490 kpc, NGC 6822 is an excellent choice for this study; it has been mapped in the CO(2–1) line using the multibeam receiver HERA on the 30 m IRAM telescope, yielding the largest sample of giant molecular clouds (GMCs) in this galaxy. Despite the much lower metallicity, we find no clear difference in the properties of the GMCs in NGC 6822 and those in the Milky Way except lower CO luminosities for a given mass. Several independent methods indicate that the


Astronomy and Astrophysics | 2014

Variation in the dust emissivity index across M 33 with Herschel and Spitzer (HerM 33es)

F. S. Tabatabaei; J. Braine; E. M. Xilouris; C. Kramer; M. Boquien; Francoise Combes; C. Henkel; M. Relaño; S. Verley; P. Gratier; F. P. Israel; Martina C. Wiedner; M. Röllig; K. Schuster; P. van der Werf

We study the wavelength dependence of the dust emission as a function of position and environment across the disk of M 33 using Spitzer and Herschel photometric data. M 33 is a Local Group spiral with slightly subsolar metallicity, which makes it an ideal stepping-stone to less regular and lower-metallicity objects such as dwarf galaxies and, probably, young-universe objects. Expressing the emissivity of the dust as a power law, the power-law exponent (β) was estimated from two independent approaches designed to properly treat the degeneracy between β and the dust temperature (T ). Both β and T are higher in the inner than in the outer disk, contrary to reported β − T anti-correlations found in other sources. In the cold + warm dust model, the warm component and the ionized gas (Hα) have a very similar distribution across the galaxy, demonstrating that the model separates the components in an appropriate way. Both cold- and warm-dust column densities are high in star-forming regions and reach their maxima toward the giant star-forming complexes NGC 604 and NGC 595. β declines from close to 2 in the center to about 1.3 in the outer disk. β is positively correlated with star formation and with the molecular gas column, as traced by the Hα and CO emission. The lower dust-emissivity index in the outer parts of M 33 is most likely related to the reduced metallicity (different grain composition) and possibly to a different size distribution. It is not due to the decrease in stellar radiation field or temperature in a simple way because the far-infrared-bright regions in the outer disk also have a low β. Like most spirals, M 33 has a (decreasing) radial gradient in star formation and molecular-to-atomic gas ratio such that the regions bright in Hα or CO tend to trace the inner disk, which makes it difficult to distinguish between their effects on the dust. The assumption of a constant emissivity index β is obviously not appropriate.


Astronomy and Astrophysics | 2010

Cool gas and dust in M 33: Results from the HERschel M 33 Extended Survey (HERM33ES)

Jonathan Braine; P. Gratier; C. Kramer; E. M. Xilouris; E. Rosolowsky; C. Buchbender; M. Boquien; Daniela Calzetti; G. Quintana-Lacaci; F. S. Tabatabaei; S. Verley; F. P. Israel; F. F. S. van der Tak; Susanne Aalto; F. Combes; S. Garcia-Burillo; M. Gonzalez; C. Henkel; B. S. Koribalski; B. Mookerjea; M. Roellig; K. Schuster; M. Relaño; Frank Bertoldi; P. van der Werf; Martina C. Wiedner

We present an analysis of the first space-based far-IR-submm observations of M33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H-2 content. In this Letter, we measure the dust emission cross-section sigma using SPIRE and recent CO and HI observations; a variation in s is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the HI column, yields a morphology similar to that observed in CO. The H-2/HI mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M33.


Astronomy and Astrophysics | 2014

The IRAM M 33 CO(2–1) survey - A complete census of molecular gas out to 7 kpc

Clément Druard; Jonathan Braine; K. Schuster; N. Schneider; P. Gratier; Sylvain Bontemps; M. Boquien; F. Combes; Edvige Corbelli; C. Henkel; Fabrice Herpin; C. Kramer; F. F. S. van der Tak; P. van der Werf

To study the interstellar medium and the interplay between the atomic and molecular components in a low-metallicity environment, we present a complete high angular and spectral resolution map and position-position-velocity data cube of the 12CO(J = 2-1) emission from the Local Group galaxy Messier 33. Its metallicity is roughly half-solar, such that we can compare its interstellar medium with that of the Milky Way with the main changes being the metallicity and the gas mass fraction. The data have a 12″ angular resolution (~50 pc) with a spectral resolution of 2.6 km s-1 and a mean and median noise level of 20 mK per channel in antenna temperature. A radial cut along the major axis was also observed in the 12CO(J = 1-0) line. The CO data cube and integrated intensity map are optimal when using H i data to define the baseline window and the velocities over which the CO emission is integrated. Great care was taken when building these maps, testing different windowing and baseline options, and investigating the effect of error beam pickup. The total CO(2-1) luminosity is 2.8 × 107 K km s-1 pc2, following the spiral arms in the inner disk, with an average decrease in intensity approximately following an exponential disk with a scale length of 2.1 kpc. There is no clear variation in the CO(2-1/1-0) intensity ratio with radius and the average value is roughly 0.8. The total molecular gas mass is estimated, using a N(H2) /ICO(1 - 0) = 4 × 1020cm-2/(K km s-1) conversion factor, to be 3.1 × 108 M⊙, including helium. The CO spectra in the cube were shifted to zero velocity by subtracting the velocity of the H i peak from the CO spectra. Stacking these spectra over the whole disk yields a CO line with a half-power width of 12.4 km s-1. As a result, the velocity dispersion between the atomic and molecular components is extremely low, independently justifying the use of the H i line in building our maps. Stacking the spectra in concentric rings shows that the CO linewidth and possibly the CO-H i velocity dispersion decrease in the outer disk. The error beam pickup could produce the weak CO emission apparently from regions in which the H i line peak does not reach 10 K, such that no CO is actually detected in these regions. Using the CO(2-1) emission to trace the molecular gas, the probability distribution function of the H2 column density shows an excess at high column density above a log-normal distribution.


Astronomy and Astrophysics | 2013

The IRAM-30 m line survey of the Horsehead PDR - III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas

P. Gratier; J. Pety; V. V. Guzmán; M. Gerin; J. R. Goicoechea; E. Roueff; Alexandre Faure

Context. Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively easily detected in our Galaxy and in other galaxies. Aims: We aim at constraining their chemistry through observations of two positions in the Horsehead edge: the photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just behind it. Methods: We systematically searched for lines of CH3CN, HC3N, C3N, and some of their isomers in our sensitive unbiased line survey at 3, 2, and 1 mm. We stacked the lines of C3N to improve the detectability of this species. We derived column densities and abundances through Bayesian analysis using a large velocity gradient radiative transfer model. Results: We report the first clear detection of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and 6 at the dense core position, and we resolved its hyperfine structure for 3 lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR position. We computed new electron collisional rate coefficients for CH3CN, andwe found that including electron excitation reduces the derived column density by 40% at the PDR position, where the electron density is 1-5 cm-3. While CH3CN is 30 times more abundant in the PDR (2.5 × 10-10) than in the dense core (8 × 10-12), HC3N has similar abundance at both positions (8 × 10-12). The isomeric ratio CH3NC/CH3CN is 0.15 ± 0.02. Conclusions: The significant amount of complex (iso-)nitrile molecule in the UV illuminated gas is puzzling as the photodissociation is expected to be efficient. This is all the more surprising in the case of CH3CN, which is 30 times more abundant in the PDR than in the dense core. In this case, pure gas phase chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of grains are destroyed through photo-desorption or thermal-evaporation in PDRs, and through sputtering in shocks. Based on observations obtained with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

Collaboration


Dive into the P. Gratier's collaboration.

Top Co-Authors

Avatar

C. Kramer

University of Cologne

View shared research outputs
Top Co-Authors

Avatar

Valentine Wakelam

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Gerin

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Braine

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

E. Roueff

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Mookerjea

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Verley

University of Granada

View shared research outputs
Researchain Logo
Decentralizing Knowledge