P.H. Jonson
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P.H. Jonson.
Nature Genetics | 2012
J. Sarparanta; P.H. Jonson; Christelle Golzio; Satu Sandell; H. Luque; Mark Screen; Kristin McDonald; Jeffrey M. Stajich; Ibrahim Mahjneh; Anna Vihola; Olayinka Raheem; Sini Penttilä; S. Lehtinen; Sanna Huovinen; Johanna Palmio; Giorgio Tasca; Enzo Ricci; Peter Hackman; Michael A. Hauser; Nicholas Katsanis; Bjarne Udd
Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to chromosome 7q36 over a decade ago, but its genetic cause has remained elusive. Here we studied nine LGMD-affected families from Finland, the United States and Italy and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar myopathy–causing protein BAG3. Our data identify the genetic cause of LGMD1D, suggest that its pathogenesis is mediated by defective chaperone function and highlight how mutations in a ubiquitously expressed gene can exert effects in a tissue-, isoform- and cellular compartment–specific manner.
Annals of Neurology | 2013
Peter Hackman; J. Sarparanta; S. Lehtinen; Anna Vihola; Anni Evilä; P.H. Jonson; H. Luque; Juha Kere; Mark Screen; Patrick F. Chinnery; Gabrielle Åhlberg; Lars Edström; Bjarne Udd
A study was undertaken to identify the molecular cause of Welander distal myopathy (WDM), a classic autosomal dominant distal myopathy.
Neuromuscular Disorders | 2015
Johanna Palmio; P.H. Jonson; Anni Evilä; Mari Auranen; Volker Straub; Kate Bushby; Anna Sarkozy; Sari Kiuru-Enari; Satu Sandell; Helena Pihko; Peter Hackman; Bjarne Udd
DNAJB6 is the causative gene for limb-girdle muscular dystrophy 1D (LGMD1D). Four different coding missense mutations, p.F89I, p.F93I, p.F93L, and p.P96R, have been reported in families from Europe, North America and Asia. The previously known mutations cause mainly adult-onset proximal muscle weakness with moderate progression and without respiratory involvement. A Finnish family and a British patient have been studied extensively due to a severe muscular dystrophy. The patients had childhood-onset LGMD, loss of ambulation in early adulthood and respiratory involvement; one patient died of respiratory failure aged 32. Two novel mutations, c.271T > A (p.F91I) and c.271T > C (p.F91L), in DNAJB6 were identified by whole exome sequencing as a cause of this severe form of LGMD1D. The results were confirmed by Sanger sequencing. The anti-aggregation effect of the mutant DNAJB6 was investigated in a filter-trap based system using transient transfection of mammalian cell lines and polyQ-huntingtin as a model for an aggregation-prone protein. Both novel mutant proteins show a significant loss of ability to prevent aggregation.
Human Molecular Genetics | 2015
Karine Charton; J. Sarparanta; Anna Vihola; Astrid Milic; P.H. Jonson; Laurence Suel; H. Luque; Imène Boumela; Isabelle Richard; Bjarne Udd
Mutations in the extreme C-terminus of titin (TTN), situated in the sarcomeric M-band, cause tibial muscular dystrophy (TMD) and limb-girdle muscular dystrophy 2J (LGMD2J). The mutations ultimately cause a loss of C-terminal titin, including a binding site for the protease calpain 3 (CAPN3), and lead to a secondary CAPN3 deficiency in LGMD2J muscle. CAPN3 has been previously shown to bind C-terminal titin and to use it as a substrate in vitro. Interestingly, mutations in CAPN3 underlie limb-girdle muscular dystrophy 2A (LGMD2A). Here, we aimed to clarify the relationship of CAPN3 and M-band titin in normal and pathological muscle. In vitro analyses identified several CAPN3 cleavage sites in C-terminal titin that were defined by protein sequencing. Furthermore, cleavage products were detected in normal muscle extracts by western blotting and in situ by immunofluorescence microscopy. The TMD/LGMD2J mutation FINmaj proved to alter this processing in vitro, while binding of CAPN3 to mutant titin was preserved. Unexpectedly, the pathological loss of M-band titin due to TMD/LGMD2J mutations was found to be independent of CAPN3, whereas the involvement of ubiquitous calpains is likely. We conclude that proteolytic processing of C-terminal titin by CAPN3 may have an important role in normal muscle, and that this process is disrupted in LGMD2A and in TMD/LGMD2J due to CAPN3 deficiency and to the loss of C-terminal titin, respectively.
Molecular Neurobiology | 2017
Anni Evilä; Johanna Palmio; Anna Vihola; Marco Savarese; G. Tasca; Sini Penttilä; Sara Lehtinen; P.H. Jonson; Jan De Bleecker; Peter P. Rainer; Michaela Auer-Grumbach; Jean Pouget; Emmanuelle Salort-Campana; Juan J. Vílchez; N. Muelas; Montse Olive; Peter Hackman; Bjarne Udd
Tibial muscular dystrophy (TMD) is the first described human titinopathy. It is a mild adult-onset slowly progressive myopathy causing weakness and atrophy in the anterior lower leg muscles. TMD is caused by mutations in the last two exons, Mex5 and Mex6, of the titin gene (TTN). The first reported TMD mutations were dominant, but the Finnish founder mutation FINmaj, an 11-bp insertion/deletion in Mex6, in homozygosity caused a completely different severe early-onset limb-girdle muscular dystrophy 2J (LGMD2J). Later, we reported that not all TMD mutations cause LGMD when homozygous or compound heterozygous with truncating mutation, but some of them rather cause a more severe TMD-like distal disease. We have now performed targeted next-generation sequencing of myopathy-related genes on seven families from Albania, Bosnia, Iran, Tunisia, Belgium, and Spain with juvenile or early adult onset recessive distal myopathy. Novel mutations in TTN Mex5, Mex6 and A-band exon 340 were identified in homozygosity or compound heterozygosity with a frameshift or nonsense mutation in TTN I- or A-band region. Family members having only one of these TTN mutations were healthy. Our results add yet another entity to the list of distal myopathies: juvenile or early adult onset recessive distal titinopathy.
PLOS ONE | 2014
Mark Screen; Olayinka Raheem; Jeanette Holmlund-Hampf; P.H. Jonson; Sanna Huovinen; Peter Hackman; Bjarne Udd
Tibial muscular dystrophy (TMD) is a late onset, autosomal dominant distal myopathy that results from mutations in the two last domains of titin. The cascade of molecular events leading from the causative Titin mutations to the preterm death of muscle cells in TMD is largely unknown. In this study we examined the mRNA and protein changes associated with the myopathology of TMD. To identify these components we performed gene expression profiling using muscle biopsies from TMD patients and healthy controls. The profiling results were confirmed through quantitative real-time PCR and protein level analysis. One of the pathways identified was activation of endoplasmic reticulum (ER) stress response. ER stress activates the unfolded protein response (UPR) pathway. UPR activation was supported by elevation of the marker genes HSPA5, ERN1 and the UPR specific XBP1 splice form. However, UPR activation appears to be insufficient to correct the protein abnormalities causing its activation because degenerative TMD muscle fibres show an increase in ubiquitinated protein inclusions. Abnormalities of VCP-associated degradation pathways are also suggested by the presence of proteolytic VCP fragments in western blotting, and VCPs accumulation within rimmed vacuoles in TMD muscle fibres together with p62 and LC3B positive autophagosomes. Thus, pathways controlling turnover and degradation, including autophagy, are distorted and lead to degeneration and loss of muscle fibres.
American Journal of Pathology | 2014
Mark Screen; P.H. Jonson; Olayinka Raheem; Johanna Palmio; Reijo Laaksonen; Terho Lehtimäki; Mario Sirito; Ralf Krahe; Peter Hackman; Bjarne Udd
Myotonic dystrophy type 2 (DM2) is a multisystemic disorder caused by a (CCTG)n repeat expansion in intron 1 of CNBP. Transcription of the repeats causes a toxic RNA gain of function involving their accumulation in ribonuclear foci. This leads to sequestration of splicing factors and alters pre-mRNA splicing in a range of downstream effector genes, which is thought to contribute to the diverse DM2 clinical features. Hyperlipidemia is frequent in DM2 patients, but the treatment is problematic because of an increased risk of statin-induced adverse reactions. Hypothesizing that shared pathways lead to the increased risk, we compared the skeletal muscle expression profiles of DM2 patients and controls with patients with hyperlipidemia on statin therapy. Neural precursor cell expressed, developmentally downregulated-4 (NEDD4), an ubiquitin ligase, was one of the dysregulated genes identified in DM2 patients and patients with statin-treated hyperlipidemia. In DM2 muscle, NEDD4 mRNA was abnormally spliced, leading to aberrant NEDD4 proteins. NEDD4 was down-regulated in persons taking statins, and simvastatin treatment of C2C12 cells suppressed NEDD4 transcription. Phosphatase and tensin homologue (PTEN), an established NEDD4 target, was increased and accumulated in highly atrophic DM2 muscle fibers. PTEN ubiquitination was reduced in DM2 myofibers, suggesting that the NEDD4-PTEN pathway is dysregulated in DM2 skeletal muscle. Thus, this pathway may contribute to the increased risk of statin-adverse reactions in patients with DM2.
JAMA Neurology | 2018
Marco Savarese; Lorenzo Maggi; Anna Vihola; P.H. Jonson; G. Tasca; Lucia Ruggiero; Luca Bello; Francesca Magri; Teresa Giugliano; Annalaura Torella; Anni Evilä; Giuseppina Di Fruscio; Olivier Vanakker; Sara Gibertini; Liliana Vercelli; Alessandra Ruggieri; Carlo Antozzi; H. Luque; Sandra Janssens; Maria Barbara Pasanisi; Chiara Fiorillo; Monika Raimondi; Manuela Ergoli; Luisa Politano; Claudio Bruno; Anna Rubegni; Marika Pane; Filippo M. Santorelli; Carlo Minetti; Corrado Angelini
Importance Mutations in the titin gene (TTN) cause a wide spectrum of genetic diseases. The interpretation of the numerous rare variants identified in TTN is a difficult challenge given its large size. Objective To identify genetic variants in titin in a cohort of patients with muscle disorders. Design, Setting, and Participants In this case series, 9 patients with titinopathy and 4 other patients with possibly disease-causing variants in TTN were identified. Titin mutations were detected through targeted resequencing performed on DNA from 504 patients with muscular dystrophy, congenital myopathy, or other skeletal muscle disorders. Patients were enrolled from 10 clinical centers in April 2012 to December 2013. All of them had not received a diagnosis after undergoing an extensive investigation, including Sanger sequencing of candidate genes. The data analysis was performed between September 2013 and January 2017. Sequencing data were analyzed using an internal custom bioinformatics pipeline. Main Outcomes and Measures The identification of novel mutations in the TTN gene and novel patients with titinopathy. We performed an evaluation of putative causative variants in the TTN gene, combining genetic, clinical, and imaging data with messenger RNA and/or protein studies. Results Of the 9 novel patients with titinopathy, 5 (55.5%) were men and the mean (SD) age at onset was 25 (15.8) years (range, 0-46 years). Of the 4 other patients (3 men and 1 woman) with possibly disease-causing TTN variants, 2 (50%) had a congenital myopathy and 2 (50%) had a slowly progressive distal myopathy with onset in the second decade. Most of the identified mutations were previously unreported. However, all the variants, even the already described mutations, require careful clinical and molecular evaluation of probands and relatives. Heterozygous truncating variants or unique missense changes are not sufficient to make a diagnosis of titinopathy. Conclusions and Relevance The interpretation of TTN variants often requires further analyses, including a comprehensive evaluation of the clinical phenotype (deep phenotyping) as well as messenger RNA and protein studies. We propose a specific workflow for the clinical interpretation of genetic findings in titin.
European Journal of Neurology | 2018
P.H. Jonson; Johanna Palmio; Mridul Johari; Sini Penttilä; Anni Evilä; I. Nelson; Gisèle Bonne; N. Wiart; Vincent Meyer; Anne Boland; Jean-François Deleuze; C. Masson; Tanya Stojkovic; Françoise Chapon; Norma B. Romero; G. Solé; X. Ferrer; A. Ferreiro; Peter Hackman; I. Richard; Bjarne Udd
The aim was to determine the genetic background of unknown muscular dystrophy in five French families.
Journal of Clinical Investigation | 2018
YouJin Lee; P.H. Jonson; J. Sarparanta; Johanna Palmio; Mohona Sarkar; Anna Vihola; Anni Evilä; Tiina Suominen; Sini Penttilä; Marco Savarese; Mridul Johari; Marie-Christine Minot; David Hilton-Jones; Paul Maddison; Patrick F. Chinnery; Jens Reimann; Cornelia Kornblum; Torsten Kraya; Stephan Zierz; Carolyn M. Sue; Hans H. Goebel; Asim Azfer; Stuart H. Ralston; Peter Hackman; Robert C. Bucelli; J. Paul Taylor; Conrad C. Weihl; Bjarne Udd
Multisystem proteinopathy (MSP) involves disturbances of stress granule (SG) dynamics and autophagic protein degradation that underlie the pathogenesis of a spectrum of degenerative diseases that affect muscle, brain, and bone. Specifically, identical mutations in the autophagic adaptor SQSTM1 can cause varied penetrance of 4 distinct phenotypes: amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Paget’s disease of the bone, and distal myopathy. It has been hypothesized that clinical pleiotropy relates to additional genetic determinants, but thus far, evidence has been lacking. Here, we provide evidence that a TIA1 (p.N357S) variant dictates a myodegenerative phenotype when inherited, along with a pathogenic SQSTM1 mutation. Experimentally, the TIA1-N357S variant significantly enhances liquid-liquid–phase separation in vitro and impairs SG dynamics in living cells. Depletion of SQSTM1 or the introduction of a mutant version of SQSTM1 similarly impairs SG dynamics. TIA1-N357S–persistent SGs have increased association with SQSTM1, accumulation of ubiquitin conjugates, and additional aggregated proteins. Synergistic expression of the TIA1-N357S variant and a SQSTM1-A390X mutation in myoblasts leads to impaired SG clearance and myotoxicity relative to control myoblasts. These findings demonstrate a pathogenic connection between SG homeostasis and ubiquitin-mediated autophagic degradation that drives the penetrance of an MSP phenotype.