Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Hajeb is active.

Publication


Featured researches published by P. Hajeb.


Appetite | 2010

Glutamate. Its applications in food and contribution to health

S. Jinap; P. Hajeb

This article reviews application of glutamate in food and its benefits and role as one of the common food ingredients used. Monosodium glutamate is one of the most abundant naturally occurring amino acids which frequently added as a flavor enhancer. It produced a unique taste that cannot be provided by other basic taste (saltiness, sourness, sweetness and bitterness), referred to as a fifth taste (umami). Glutamate serves some functions in the body as well, serving as an energy source for certain tissues and as a substrate for glutathione synthesis. Glutamate has the potential to enhance food intake in older individuals and dietary free glutamate evoked a visceral sensation from the stomach, intestine and portal vein. Small quantities of glutamate used in combination with a reduced amount of table salt during food preparation allow for far less salt to be used during and after cooking. Because glutamate is one of the most intensely studied food ingredients in the food supply and has been found safe, the Joint Expert Committee on Food Additives of the United Nations Food and Agriculture Organization and World Health Organization placed it in the safest category for food additives. Despite a widespread belief that glutamate can elicit asthma, migraine headache and Chinese Restaurant Syndrome (CRS), there are no consistent clinical data to support this claim. In addition, findings from the literature indicate that there is no consistent evidence to suggest that individuals may be uniquely sensitive to glutamate.


Clinical Reviews in Allergy & Immunology | 2012

A Contemporary Review of Seafood Allergy

P. Hajeb; Jinap Selamat

Seafood is common item in the world diet; Asian countries have the highest rates of fish consumption in the world, which is higher than world average. Several studies have been conducted on the epidemiology and clinical characteristics of seafood allergy in different countries, and some of the fish and seafood allergens unique to those regions have been characterized. Review on published data showed that seafood allergy is very ubiquitous in some regions of the world. Fish and shellfish are the most common seafood that cause adverse allergic reactions among nations; the symptoms ranged from oral allergy syndromes to urticaria and anaphylaxis. The major identified allergens are parvalbumin in fish and tropomyosin in shellfish. Nevertheless, such studies are lacking from some regions with high fish and seafood consumption. Furthermore, the published data are mostly from small groups of populations, which large-scale epidemiological studies need to be performed.


Comprehensive Reviews in Food Science and Food Safety | 2013

A REVIEW ON MYCOTOXINS IN FOOD AND FEED: MALAYSIA CASE STUDY

L. Afsah-Hejri; S. Jinap; P. Hajeb; Son Radu; Sh. Shakibazadeh

 Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T-2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin-producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat-based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.


Comprehensive Reviews in Food Science and Food Safety | 2014

Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches

P. Hajeb; Jens Jørgen Sloth; Sh. Shakibazadeh; Nor Ainy Mahyudin; L. Afsah-Hejri

Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular emphasis on the chemical binding of both the organic and inorganic forms of each element in various foods. The molecular groups and the ligands by which the food products bind with the metals and the types of these reactions are also presented.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2010

Dietary exposure to heterocyclic amines in high-temperature cooked meat and fish in Malaysia

M.H.A. Jahurul; S. Jinap; S.J. Ang; A. Abdul-Hamid; P. Hajeb; Hanifah Nuryani Lioe; I.S.M. Zaidul

The intake of heterocyclic amines is influenced by the amount and type of meat and fish ingested, frequency of consumption, cooking methods, cooking temperature, and duration of cooking. In this study, the dietary intake of heterocyclic amines in Malaysia and their main sources were investigated. Forty-two samples of meat and fish were analysed by high-performance liquid chromatography with photodiode array detector to determine the concentration of the six predominant heterocyclic amines, namely: 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f] quinoline(MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8-trimethylimidazo[4,5-f] quinoxaline (7,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Dietary intake data were obtained using a food-frequency questionnaire when interviewing 600 Malaysian respondents. The level of total heterocyclic amines in food samples studies ranged from not detected to 38.7 ng g−1. The average daily intake level of heterocyclic amine was 553.7 ng per capita day−1. The intake of PhIP was the highest, followed by MeIQx and MeIQ. The results reveal that fried and grilled chicken were the major dietary source of heterocyclic amines in Malaysia. However, the heterocyclic amine intake by the Malaysian population was lower than those reported from other regions.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2009

Effects of washing pre-treatment on mercury concentration in fish tissue.

P. Hajeb; S. Jinap

The objective of this study was to examine the effect of washing pre-treatment on mercury concentration in fish fillet. Response surface methodology was used to investigate the influence of three variables, pH (1–6.5), NaCl (0–1% w/v) and exposure time (5–30 min) by using a three-factor central composite design. The aim was to obtain the best possible combination of these variables in order to reduce mercury in fish fillet. The experimental data were adequately fitted into a second-order polynomial model with multiple regression coefficients (R 2) of 0.961. The results indicated that the reduction of mercury in fish flesh significantly depends on the pH of the solution used. The overall optimal condition resulting in the maximum mercury reduction in fish fillet was obtained at a combined level pH of 2.79, NaCl of 0.5% and exposure time of 13.5 min. The optimized protocol produced a solution that can reduce mercury from raw fish fillet up to 81%.


Reviews of Environmental Contamination and Toxicology | 2012

Mercury Pollution in Malaysia

P. Hajeb; S. Jinap; Ahmad Ismail; Nor Ainy Mahyudin

Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption.


International Journal of Environmental Analytical Chemistry | 2010

Methylmercury in marine fish from Malaysian waters and its relationship to total mercury content.

P. Hajeb; S. Jinap; Abu B. Fatimah; B. Jamilah

The study evaluated methylmercury concentrations, the methylmercury to total mercury ratio (%MeHg) and their correlations in ten fish species from different trophic levels. Methylmercury levels in fish studied were in the range of 0.007 to 0.914 µg g−1 wet wt. Muscle tissue of predatory fish contained significantly (p < 0.05) higher content of methylmercury than non-predatory fish. The methylmercury to total mercury ratio ranged from 49.1% to 87.5%, with the highest ratio in predatory fish. This ratio was always higher in muscle tissue compared to the liver tissues, indicating tissue-specific binding and accumulation of methylmercury in the muscle. All the fish species showed strong positive correlation between methylmercury and total mercury levels (R 2> 0.86). Except for long tail tuna and short-bodied mackerel, all fish species showed lower methylmercury levels and estimated weekly intake as compared to the maximum values established by US FDA (of 0.5 µg g−1) and by FAO/WHO (1.5 µg kg−1 bodyweight), respectively. This study showed that the percentage of methylmercury is rather high in fish and fish represents the major source of this toxic mercury form to the local population.


Asian Pacific Journal of Cancer Prevention | 2016

Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: a Tool for Assessing Human Cancer Risk.

Elliyana Nadia Hamidi; P. Hajeb; Jinap Selamat; Ahmad Faizal Abdull Razis

Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2014

Optimisation of the supercritical extraction of toxic elements in fish oil

P. Hajeb; S. Jinap; Sh. Shakibazadeh; L. Afsah-Hejri; G.H. Mohebbi; I.S.M. Zaidul

This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R2) (0.897–0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO2 flow rate of 3.7 ml min−1 and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents. Graphical Abstract

Collaboration


Dive into the P. Hajeb's collaboration.

Top Co-Authors

Avatar

S. Jinap

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Jinap Selamat

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I.S.M. Zaidul

International Islamic University Malaysia

View shared research outputs
Top Co-Authors

Avatar

Jamilah Bakar

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

L. Afsah-Hejri

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad Ismail

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

B. Jamilah

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge