Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P Hryniewicz is active.

Publication


Featured researches published by P Hryniewicz.


IOP Conference Series: Materials Science and Engineering | 2015

The modular design of robotic workcells in a flexible production line

W Banas; Agnieszka Sękala; Aleksander Gwiazda; K Foit; P Hryniewicz; Gabriel Kost

In the case of large-scale and mass production lines often the same model of an industrial robot is used in various places of the line and is intended to various task. However, the replacement of one industrial robot to another is a long lasting and arduous process. It requires stopping all the production line and sometimes even dismantling the whole workcell. Such situations are not frequent in production lines that are not flexible. They are related the most often with the failure on an industrial robot. However, during the designing of a flexible production line the ability to replace any robot, which is unrestricted, fast and trouble-free, greatly increase the flexibility level of such line. It could be realized by modular design of the proposed production line. In this way it could be possible to change any elements of such production system. But this approach needs to apply the specialized informatics system.This paper presents the obtained design of several versions of the same production workcell. Each, succeeding version of the designed production workcell contains more and more modular elements. Thereby it would be presented the evolution of a workcell design beginning from the typical design and ending with the fully modular one. One of tools needed to realize this task is the elaboration of a base of modules and typical joint and mounting elements that could be utilised in the described designing process. It is also presented the guidance information about the designing and programming processes useful at each stage of analysed process.


IOP Conference Series: Materials Science and Engineering | 2015

Modular industrial robots as the tool of process automation in robotized manufacturing cells

Aleksander Gwiazda; W Banas; Agnieszka Sękala; K Foit; P Hryniewicz; Gabriel Kost

Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also outsourced to an independent manufacturer. Standardization and run of the entire modular machine should be easier if standardized are individual modules. The advantages of modular design, in addition to those mentioned above, there are many more.


IOP Conference Series: Materials Science and Engineering | 2015

Agent-based models in robotized manufacturing cells designing

Agnieszka Sękala; Aleksander Gwiazda; K Foit; W Banas; P Hryniewicz; Gabriel Kost

The complexity of the components, presented in robotized manufacturing workcells, causes that already at the design phase is necessary to develop models presenting various aspects of their structure and functioning. These models are simplified representation of real systems and allow to, among others, systematize knowledge about the designed manufacturing workcell. They also facilitate defining and analyzing the interrelationships between its particular components. This paper proposes the agent-based approach applied for designing robotized manufacturing cells.


IOP Conference Series: Materials Science and Engineering | 2015

Construction typification as the tool for optimizing the functioning of a robotized manufacturing system

Aleksander Gwiazda; W Banas; Agnieszka Sękala; K Foit; P Hryniewicz; Gabriel Kost

Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex: simple models of technological equipment, conveyors models, models of the obstacles and like that. Using these elements it could be formed various production spaces (robotized workcells), in which it is possible to virtually track the operation of an industrial robot arm modelled in the system.


IOP Conference Series: Materials Science and Engineering | 2015

Determination of the robot location in a workcell of a flexible production line

W Banas; Agnieszka Sękala; Aleksander Gwiazda; K Foit; P Hryniewicz; Gabriel Kost

Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.


IOP Conference Series: Materials Science and Engineering | 2016

Modelling of robotic work cells using agent based-approach

Agnieszka Sękala; W Banaś; Aleksander Gwiazda; Z Monica; Gabriel Kost; P Hryniewicz

In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.


IOP Conference Series: Materials Science and Engineering | 2017

Modelling of a mecanum wheel taking into account the geometry of road rollers

P Hryniewicz; Aleksander Gwiazda; W Banaś; Agnieszka Sękala; K Foit

During the process planning in a company one of the basic factors associated with the production costs is the operation time for particular technological jobs. The operation time consists of time units associated with the machining tasks of a workpiece as well as the time associated with loading and unloading and the transport operations of this workpiece between machining stands. Full automation of manufacturing in industry companies tends to a maximal reduction in machine downtimes, thereby the fixed costs simultaneously decreasing. The new construction of wheeled vehicles, using Mecanum wheels, reduces the transport time of materials and workpieces between machining stands. These vehicles have the ability to simultaneously move in two axes and thus more rapid positioning of the vehicle relative to the machining stand. The Mecanum wheel construction implies placing, around the wheel free rollers that are mounted at an angle 450, which allow the movement of the vehicle not only in its axis but also perpendicular thereto. The improper selection of the rollers can cause unwanted vertical movement of the vehicle, which may cause difficulty in positioning of the vehicle in relation to the machining stand and the need for stabilisation. Hence the proper design of the free rollers is essential in designing the whole Mecanum wheel construction. It allows avoiding the disadvantageous and unwanted vertical vibrations of a whole vehicle with these wheels. In the article the process of modelling the free rollers, in order to obtain the desired shape of unchanging, horizontal trajectory of the vehicle is presented. This shape depends on the desired diameter of the whole Mecanum wheel, together with the road rollers, and the width of the drive wheel. Another factor related with the curvature of the trajectory shape is the length of the road roller and its diameter decreases depending on the position with respect to its centre. The additional factor, limiting construction of the road rollers, is their bearings. Depending on the load, carried by the vehicle and the rotational speed of the drive wheel, the bearings themselves can greatly affect the diameter of the rollers and the whole Mecanum wheels. The solution of this problem is presented in the paper. It is illustrated with virtual models elaborated in advanced program of the CAE class.


IOP Conference Series: Materials Science and Engineering | 2015

Technological process supervising using vision systems cooperating with the LabVIEW vision builder

P Hryniewicz; W Banaś; Aleksander Gwiazda; K Foit; Agnieszka Sękala; Gabriel Kost

One of the most important tasks in the production process is to supervise its proper functioning. Lack of required supervision over the production process can lead to incorrect manufacturing of the final element, through the production line downtime and hence to financial losses. The worst result is the damage of the equipment involved in the manufacturing process. Engineers supervise the production flow correctness use the great range of sensors supporting the supervising of a manufacturing element. Vision systems are one of sensors families. In recent years, thanks to the accelerated development of electronics as well as the easier access to electronic products and attractive prices, they become the cheap and universal type of sensors. These sensors detect practically all objects, regardless of their shape or even the state of matter. The only problem is considered with transparent or mirror objects, detected from the wrong angle. Integrating the vision system with the LabVIEW Vision and the LabVIEW Vision Builder it is possible to determine not only at what position is the given element but also to set its reorientation relative to any point in an analyzed space. The paper presents an example of automated inspection. The paper presents an example of automated inspection of the manufacturing process in a production workcell using the vision supervising system. The aim of the work is to elaborate the vision system that could integrate different applications and devices used in different production systems to control the manufacturing process.


IOP Conference Series: Materials Science and Engineering | 2015

Object positioning in storages of robotized workcells using LabVIEW Vision

P Hryniewicz; W Banaś; Agnieszka Sękala; Aleksander Gwiazda; K Foit; Gabriel Kost

During the manufacturing process, each performed task is previously developed and adapted to the conditions and the possibilities of the manufacturing plant. The production process is supervised by a team of specialists because any downtime causes great loss of time and hence financial loss. Sensors used in industry for tracking and supervision various stages of a production process make it much easier to maintain it continuous. One of groups of sensors used in industrial applications are non-contact sensors. This group includes: light barriers, optical sensors, rangefinders, vision systems, and ultrasonic sensors. Through to the rapid development of electronics the vision systems were widespread as the most flexible type of non-contact sensors. These systems consist of cameras, devices for data acquisition, devices for data analysis and specialized software. Vision systems work well as sensors that control the production process itself as well as the sensors that control the product quality level. The LabVIEW program as well as the LabVIEW Vision and LabVIEW Builder represent the application that enables program the informatics system intended to process and product quality control. The paper presents elaborated application for positioning elements in a robotized workcell. Basing on geometric parameters of manipulated object or on the basis of previously developed graphical pattern it is possible to determine the position of particular manipulated elements. This application could work in an automatic mode and in real time cooperating with the robot control system. It allows making the workcell functioning more autonomous.


IOP Conference Series: Materials Science and Engineering | 2017

Modelling cooperation of industrial robots as multi-agent systems

P Hryniewicz; W Banas; K Foit; Aleksander Gwiazda; Agnieszka Sękala

Collaboration


Dive into the P Hryniewicz's collaboration.

Top Co-Authors

Avatar

Agnieszka Sękala

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aleksander Gwiazda

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

K Foit

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gabriel Kost

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

W Banas

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

W Banaś

Silesian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Z Monica

Silesian University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge