P. Hüntemeyer
Michigan Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Hüntemeyer.
Physical Review Letters | 2004
R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; J. A. Bellido; K. Belov; J.W. Belz; D. R. Bergman; Z. Cao; R. W. Clay; M.D. Cooper; H. Dai; B. R. Dawson; Adam A. Everett; Yu. A. Fedorova; J.H.V. Girard; R.C. Gray; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; P. Hüntemeyer; B.F. Jones; Charles C. H. Jui; D. Kieda; K. Kim; M. A. Kirn; E. C. Loh; N. Manago; L.J. Marek; K. Martens
We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Flys Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.
Physical Review Letters | 2010
R. Abbasi; T. Abu-Zayyad; M. Al-Seady; M. Allen; J.F. Amman; R. Anderson; G. Archbold; K. Belov; J.W. Belz; D. R. Bergman; S.A. Blake; O. A. Brusova; G. W. Burt; C. Cannon; Z. Cao; W. Deng; Y. Fedorova; C. Finley; R.C. Gray; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; B.F. Jones; Charles C. H. Jui; K. Kim; M.A. Kirn; E. C. Loh; J. Liu
We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Flys Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d/d[log(E)] of 47.9+/-6.0(stat)+/-3.2(syst) g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4x10(18) eV.
The Astrophysical Journal | 2005
R. Abbasi; T. Abu-Zayyad; G. Archbold; R. Atkins; J. A. Bellido; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; J. Boyer; G. W. Burt; Z. Cao; R. W. Clay; B. M. Connolly; B. R. Dawson; W. Deng; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; B. C. Knapp; E. C. Loh; M. M. Maetas; K. Martens; G. Martin
The composition of Ultra High Energy Cosmic Rays (UHECR) is measured with the High Resolution Flys Eye cosmic ray observatory (HiRes) data using the Xmax technique. Data were collected in stereo between 1999 November and 2001 September. The data are reconstructed with well-determined geometry. Measurements of the atmospheric transmission are incorporated in the reconstruction. The detector resolution is found to be 30 g cm^-2 in Xmax and 13% in Energy. The Xmax elongation rate between 10^18.0 eV and 10^19.4 eV is measured to be 54.5 +/- 6.5 (stat) +/- 4.5 (sys) g cm^-2 per decade. This is compared to predictions using the QGSJet01 and SIBYLL 2.1 hadronic interaction models for both protons and iron nuclei. CORSIKA-generated Extensive Air Showers (EAS) are incorporated directly into a detailed detector Monte Carlo program. The elongation rate and the Xmax distribution widths are consistent with a constant or slowly changing and predominantly light composition. A simple model containing only protons and iron nuclei is compared to QGSJet and SIBYLL. The best agreement between the model and the data is at 80% protons for QGSJet and 60% protons for SIBYLL.The composition of ultra-high-energy cosmic rays is measured with the High Resolution Flys Eye cosmic-ray observatory data using the Xmax technique. Data were collected in stereo between 1999 November and 2001 September. The data are reconstructed with well-determined geometry. Measurements of the atmospheric transmission are incorporated in the reconstruction. The detector resolution is found to be 30 g cm-2 in Xmax and 13% in energy. The Xmax elongation rate between 1018.0 and 1019.4 eV is measured to be 54.5 ± 6.5 ± 4.5 g cm-2 per decade. This is compared with predictions using the QGSJet01 and SIBYLL 2.1 hadronic interaction models for both protons and iron nuclei. CORSIKA-generated extensive air showers are incorporated directly into a detailed detector Monte Carlo program. The elongation rate and the Xmax distribution widths are consistent with a constant or slowly changing and predominantly light composition. A simple model containing only protons and iron nuclei is compared with QGSJet and SIBYLL. The best agreement between the model and the data is for 80% protons for QGSJet and 60% protons for SIBYLL.
The Astrophysical Journal | 2007
A. A. Abdo; B. Allen; D. Berley; S. Casanova; C. Chen; D. G. Coyne; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou
A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma-Ray Observatory. Eight candidate sources of TeV emission are detected with pretrial significances >4.5 σ in the region of Galactic longitude l [30°, 220°] and latitude b [-10°, 10°]. Four of these sources, including the Crab Nebula and the recently published MGRO J2019+37, are observed with significances >4 σ after accounting for the trials. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources, and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.
The Astrophysical Journal | 2009
A. A. Abdo; B. Allen; T. Aune; D. Berley; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou
Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) ×10–3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.
Physical Review Letters | 2008
Aous A. Abdo; B. T. Allen; T. Aune; D. Berley; E. Blaufuss; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou
The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.
The Astrophysical Journal | 2009
A. A. Abdo; B. T. Allen; T. Aune; D. Berley; C. Chen; G. E. Christopher; T. DeYoung; B. L. Dingus; R. W. Ellsworth; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; J. Linnemann; J. E. McEnery; T. Morgan; Allen Mincer; P. Nemethy; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; V. Vasileiou; G. P. Walker; D. A. Williams; G. Yodh
We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.
Astroparticle Physics | 2008
R. Abbasi; R. Riehle; Xiang Zhang; N. Manago; G. Archbold; S.B. Thomas; R. Snow; J. D. Smith; C.A. Painter; K. Martens; S. Schnetzer; E. C. Loh; G. W. Burt; B.T. Stokes; A. Zech; L. R. Wiencke; G. Hughes; S.R. Stratton; S.Y. BenZvi; D.Rodriguez N. Sasaki; S.A. Moore; W. Hanlon; R.C. Gray; D. R. Bergman; M. Seman; L.M. Scott; G. Sinnis; E.J. Mannel; P. Sokolsky; K. Reil
Abstract We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly’s Eye experiment and active galactic nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for sources visible to their southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found occurred with a chance probability of 24%.
The Astrophysical Journal | 2008
Aous A. Abdo; B. T. Allen; T. Aune; D. Berley; E. Blaufuss; S. Casanova; C. Chen; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; J. Linnemann; J. E. McEnery; Allen Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; T. A. Porter; J. Pretz; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith
Diffuse � -ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the northern hemisphere sky and for detecting diffuse � -ray emission at very high energies. Here the spatial distributionand thefluxof thediffuse � -rayemission inthe TeVenergyrange withamedian energyof 15TeV for Galactic longitude between 30 � and 110 � and between 136 � and 216 � and for Galactic latitude between � 10 � and 10 � aredetermined.Themeasuredfluxesareconsistentwithpredictionsof theGALPROPmodeleverywhere,except for the Cygnus region (l 2½ 65 � ;85 � � ). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the presence of active cosmic-ray sources accelerating hadrons, which interact with the local dense interstellar medium and produce gamma rays through pion decay. Subject headingg gamma rays: observations
The Astrophysical Journal | 2006
R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; S.A. Blake; J. Boyer; G. W. Burt; Z. Cao; B. M. Connolly; W. Deng; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; B. C. Knapp; E. C. Loh; M.M. Maestas; N. Manago; E.J. Mannel
Data taken in stereo mode by the High Resolution Flys Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultra--high-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lacs and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lacs from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.Data taken in stereo mode by the High Resolution Flys Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultrahigh-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lac objects and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lac objects from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.