P. J. Amado
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. J. Amado.
Nature | 2016
Guillem Anglada-Escudé; P. J. Amado; J. R. Barnes; Zaira M. Berdiñas; R. Paul Butler; Gavin A. L. Coleman; Ignacio de la Cueva; S. Dreizler; Michael Endl; Benjamin Giesers; S. V. Jeffers; J. S. Jenkins; Hugh R. A. Jones; Marcin Kiraga; M. Kürster; Marίa J. López-González; C. J. Marvin; N. Morales; J. Morin; Richard P. Nelson; Jose Luis Ortiz; A. Ofir; Sijme-Jan Paardekooper; Ansgar Reiners; E. Rodríguez; Cristina Rodrίguez-López; L. F. Sarmiento; J. B. P. Strachan; Y. Tsapras; Mikko Tuomi
At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun’s closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.
Monthly Notices of the Royal Astronomical Society | 2004
G. Handler; R. R. Shobbrook; M. Jerzykiewicz; K. Krisciunas; T. Tshenye; E. Rodríguez; V. Costa; A.-Y. Zhou; Rodney Thebe Medupe; W. M. Phorah; R. Garrido; P. J. Amado; M. Paparó; D. Zsuffa; L. Ramokgali; R. Crowe; N. Purves; R. Avila; R. Knight; E. Brassfield; P. M. Kilmartin; P. L. Cottrell
Asteroseismology of the β Cephei star ν Eridani : II. Spectroscopic observations and pulsational frequency analysis
Monthly Notices of the Royal Astronomical Society | 2006
G. Handler; M. Jerzykiewicz; E. Rodríguez; K. Uytterhoeven; P. J. Amado; T. N. Dorokhova; N. I. Dorokhov; E. Poretti; J. P. Sareyan; L. Parrao; D. Lorenz; D. Zsuffa; R. Drummond; J. Daszyńska-Daszkiewicz; T. Verhoelst; J. De Ridder; B. Acke; P.-O. Bourge; A. I. Movchan; R. Garrido; M. Paparó; T. Sahin; V. Antoci; S. N. Udovichenko; K. Csorba; R. Crowe; B. Berkey; S. Stewart; D. Terry; David E. Mkrtichian
We report a multisite photometric campaign for the β Cephei star 12 Lacertae. 750 hours of high-quality differential photoelectric Strömgren, Johnson and Geneva timeseries photometry were obtained with 9 telescopes during 190 nights. Our frequency analysis results in the detection of 23 sinusoidal signals in the light curves. Eleven of those correspond to independent pulsation modes, and the remainder are combination frequencies. We find some slow aperiodic variability such as that seemingly present in several β Cephei stars. We perform mode identification from our colour photometry, derive the spherical degree l for the five strongest modes unambiguously and provide constraints on l for the weaker modes. We find a mixture of modes of 0 6 l 6 4. In particular, we prove that the previously suspected rotationally split triplet within the modes of 12 Lac consists of modes of different l; their equal frequency splitting must thus be accidental. One of the periodic signals we detected in the light curves is argued to be a linearly stable mode excited to visible amplitude by nonlinear mode coupling via a 2:1 resonance. We also find a low-frequency signal in the light variations whose physical nature is unclear; it could be a parent or daughter mode resonantly coupled. The remaining combination frequencies are consistent with simple light-curve distortions. The range of excited pulsation frequencies of 12 Lac may be sufficiently large that it cannot be reproduced by standard models. We suspect that the star has a larger metal abundance in the pulsational driving zone, a hypothesis also capable of explaining the presence of Cephei stars in the LMC.
Astronomy and Astrophysics | 2009
A. García Hernández; A. Moya; Eric Michel; R. Garrido; J. C. Suárez; E. Rodríguez; P. J. Amado; S. Martin-Ruiz; A. Rolland; E. Poretti; R. Samadi; A. Baglin; M. Auvergne; C. Catala; L. Lefèvre; F. Baudin
We present an analysis of the \delta-Scuti star object HD 174936 (ID 7613) observed by CoRoT during the first short run SRc01 (27 days). A total number of 422 frequencies we are extracted from the light curve using standard prewhitening techniques. This number of frequencies was obtained by considering a spectral significance limit of sig = 10 using the software package SigSpec. Our analysis of the oscillation frequency spectrum reveals a spacing periodicity of around 52 \muHz. Although modes considered here are not in the asymptotic regime, a comparison with stellar models confirms that this signature may stem from a quasi-periodic pattern similar to the so-called large separation in solar-like stars.
Proceedings of SPIE | 2010
A. Quirrenbach; P. J. Amado; H. Mandel; J. A. Caballero; Reinhard Mundt; Ignasi Ribas; Ansgar Reiners; Miguel Abril; J. Aceituno; Cristina Afonso; D. Barrado y Navascués; Jacob L. Bean; V. J. S. Béjar; S. Becerril; A. Böhm; Manuel Cárdenas; Antonio Claret; J. Colomé; Luis P. Costillo; S. Dreizler; Matilde Fernández; Xavier Francisco; D. Galadí; R. Garrido; J. I. González Hernández; J. Guàrdia; Eike W. Guenther; F. Gutiérrez-Soto; Viki Joergens; A. Hatzes
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.
Astronomy and Astrophysics | 2015
F. J. Alonso Floriano; J. C. Morales; J. A. Caballero; David Montes Gutiérrez; A. Klutsch; Reinhard Mundt; Miriam Cortés Contreras; Ignasi Ribas; Ansgar Reiners; P. J. Amado; A. Quirrenbach; S. V. Jeffers
Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims. We prepare a list of the brightest, single M dwarfs in each spectral subtype observable from the northern hemisphere, from which we will select the best planet-hunting targets for CARMENES. Methods. In this first paper on the preparation of our input catalogue, we compiled a large amount of public data and collected low-resolution optical spectroscopy with CAFOS at the 2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types using a dense grid of standard stars, a double least-squares minimisation technique, and 31 spectral indices previously defined by other authors. Additionally, we quantified surface gravity, metallicity, and chromospheric activity for all the stars in our sample. Results. We calculated spectral types for all 753 stars, of which 305 are new and 448 are revised. We measured pseudo-equivalent widths of Halpha for all the stars in our sample, concluded that chromospheric activity does not affect spectral typing from our indices, and tabulated 49 stars that had been reported to be young stars in open clusters, moving groups, and stellar associations. Of the 753 stars, two are new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range M4.0-8.0 V are among the brightest stars known in their spectral subtype. Conclusions. This collection of low-resolution spectroscopic data serves as a candidate target list for the CARMENES survey and can be highly valuable for other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the solar neighbourhood.
Monthly Notices of the Royal Astronomical Society | 2014
Guillem Anglada-Escudé; Pamela Arriagada; Mikko Tuomi; M. Zechmeister; J. S. Jenkins; A. Ofir; S. Dreizler; Enrico Gerlach; C. J. Marvin; Ansgar Reiners; S. V. Jeffers; R. P. Butler; S. S. Vogt; P. J. Amado; C. Rodríguez-López; Zaira M. Berdiñas; J. Morin; Jeffrey D. Crane; Stephen A. Shectman; Ian B. Thompson; M. Diaz; Eugenio J. Rivera; L. F. Sarmiento; Hugh R. A. Jones
Exoplanets of a few Earth masses can be now detected around nearby low-mass stars using Doppler spectroscopy. In this paper, we investigate the radial velocity variations of Kapteyns star, which is both a sub-dwarf M-star and the nearest halo object to the Sun. The observations comprise archival and new HARPS, HIRES and PFS Doppler measurements. Two Doppler signals are detected at periods of 48 and 120 days using likelihood periodograms and a Bayesian analysis of the data. Using the same techniques, the activity indicies and archival ASAS-3 photometry show evidence for low-level activity periodicities of the order of several hundred days. However, there are no significant correlations with the radial velocity variations on the same time-scales. The inclusion of planetary Keplerian signals in the model results in levels of correlated and excess white noise that are remarkably low compared to younger G, K and M dwarfs. We conclude that Kapteyns star is most probably orbited by two super-Earth mass planets, one of which is orbiting in its circumstellar habitable zone, becoming the oldest potentially habitable planet known to date. The presence and long-term survival of a planetary system seems a remarkable feat given the peculiar origin and kinematic history of Kapteyns star. The detection of super-Earth mass planets around halo stars provides important insights into planet-formation processes in the early days of the Milky Way.
Astronomy and Astrophysics | 2008
Katrien Uytterhoeven; P. Mathias; E. Poretti; Monica Rainer; S. Martín-Ruiz; Eugenio Rodriguez; P. J. Amado; D. Le Contel; S. Jankov; E. Niemczura; K. R. Pollard; E. Brunsden; M. Paparó; V. Costa; J.-C. Valtier; R. Garrido; J. C. Suárez; P. M. Kilmartin; E. Chapellier; C. Rodríguez-López; A. J. Marin; F. J. Aceituno; V. Casanova; A. Rolland; Ignacio E. Olivares
Context. We present an extensive ground-based photometric and spectroscopic campaign of the γ Dor CoRoT target HD 49434. This campaign was a preparatory step of the CoRoT satellite observations, which occurred between October 2007 and March 2008. Aims. With satellite data, detection of low-degree pulsation modes only is achievable, and, as no filters are available, with poor identification. Ground-based data promise eventually to identify additional modes and provide extra input for the identification: spectroscopic data allows the detection of high-degree modes and an estimate of the azimuthal number m. We attempt to detect and identify as many pulsation modes as possible from the ground-based dataset of the γ Dor star HD 49434, and anticipate the CoRoT results. Methods. We searched for frequencies in the multi-colour variations, the pixel-to-pixel variations across the line profiles, and the moments variations in a large dataset, consisting of both multi-colour photometric and spectroscopic data from different observatories, using different frequency analysis methods. We performed a tentative mode identification of the spectroscopic frequencies using the Moment Method and the Intensity Period Search Method. We also completed an abundance analysis. Results. The frequency analysis clearly indicates the presence of four frequencies in the 0.2−1.7 d −1 interval, as well as six frequencies in the 5−12 d −1 domain. The low frequencies are typical of γ Dor variables, while the high frequencies are common to δ Sct pulsators. We propose that the frequency 2.666 d −1 is the rotational frequency. All modes, for which an identification was possible, appear to be high-degree modes (3 ≤ � ≤ 8). We did not find evidence for a possible binary nature of the star HD 49434. The element abundances that we derived are consistent with values obtained in previous analyses. Conclusions. We classify the γ Dor star HD 49434 as a hybrid pulsator, which pulsates simultaneously in p -a ndg-modes. This implies that HD 49434 is an extremely interesting target for asteroseismic modelling.
The Astronomical Journal | 2005
E. Solano; C. Catala; R. Garrido; E. Poretti; E. Janot-Pacheco; R. Gutiérrez; R. González; Luciano Mantegazza; C. Neiner; Y. Frémat; S. Charpinet; W. W. Weiss; P. J. Amado; M. Rainer; V. Tsymbal; D. Lyashko; D. Ballereau; J. C. Bouret; T. Hua; D. Katz; F. Lignières; Th. Lüftinger; P. Mittermayer; N. Nesvacil; C. Soubiran; C. van 't Veer-Menneret; M.J. Goupil; V. Costa; A. Rolland; E. Antonello
The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofisica Espacial y Fisica Fundamental (Laboratory for Space Astrophysics and Theoretical Physics, Spain). Its intention is to make the ground-based observations obtained in preparation of the asteroseismology program available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since 1998 January 1998 in 6 years of observational campaigns. In this paper, the main functions and characteristics of the system are described. Based on observations collected at La Silla (ESO proposals 67.D-0169, 69.D-0166, and 70.D-0110), Telescopio Nazionale Galileo (proposal 6-20-068), Observatoire de Haute-Provence, the South African Astronomical Observatory, Tautenburg Observatory, and Sierra Nevada Observatory.
Astronomy and Astrophysics | 2013
A. García Hernández; A. Moya; E. Michel; J. C. Suárez; E. Poretti; S. Martin-Ruiz; P. J. Amado; R. Garrido; E. Rodríguez; M. Rainer; K. Uytterhoeven; C. Rodrigo; E. Solano; J. R. Rodón; P. Mathias; A. Rolland; Michel Auvergne; A. Baglin; F. Baudin; C. Catala; R. Samadi
Aims. The aim of this work was to use a multi-approach technique to derive the most accurate values possible of the physical parameters of the δ Sct star HD 174966, which was observed with the CoRoT satellite. In addition, we searched for a periodic pattern in the frequency spectra with the goal of using it to determine the mean density of the star. Methods. First, we extracted the frequency content from the CoRoT light curve. Then, we derived the physical parameters of HD 174966 and carried a mode identification out from the spectroscopic and photometric observations. We used this information to look for the models fulfilling all the conditions and discussed the inaccuracies of the method because of the rotation effects. In a final step, we searched for patterns in the frequency set using a Fourier transform, discussed its origin, and studied the possibility of using the periodicity to obtain information about the physical parameters of the star. Results. A total of 185 peaks were obtained from the Fourier analysis of the CoRoT light curve, all of which were reliable pulsating frequencies. From the spectroscopic observations, 18 oscillation modes were detected and identified, and the inclination angle (62.5 ◦+7.5 −17.5 ) and the rotational velocity of the star (142 km s −1 ) were estimated. From the multi-colour photometric observations, only three frequencies were detected that correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a quasiperiodic pattern Δν ∼ 64 μHz. Using the inclination angle, the rotational velocity, and an Echelle diagram (showing a double comb outside the asymptotic regime), we concluded that the periodicity corresponds to a large separation structure. The quasiperiodic pattern allowed us to discriminate models from a grid. As a result, the value of the mean density is achieved with a 6% uncertainty. So, the Δν pattern could be used as a new observable for A-F type stars.