Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P.J.M. Hendriksen is active.

Publication


Featured researches published by P.J.M. Hendriksen.


Theriogenology | 2002

Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos

S.J. Dieleman; P.J.M. Hendriksen; Dorthe Viuff; Preben Dybdahl Thomsen; Poul Hyttel; Hiemke M. Knijn; C. Wrenzycki; T.A.M. Kruip; Heinrich Niemann; Barend M. Gadella; M.M. Bevers; P.L.A.M. Vos

In current in vitro production (IVP) systems, oocytes lack in vivo dominant and preovulatory follicular development, which may compromise pregnancy and viability of calves born. When an oocyte sets off in vivo on the road toward fertilization, it contains numerous transcripts and proteins necessary to survive the first few cell cycles of embryonic development. It is not yet known during which period of development the oocyte builds up the store, possibly primarily during the major growth phase of the oocyte, which is completed at the time a follicle reaches the size of 3 mm. Here, we investigated to what extent the later phases of follicular development, such as prematuration in the dominant follicle before the LH surge and ensuing final maturation in the preovulatory follicle, contribute to oocyte competence and development into viable biastocysts. Recent studies on in vivo vs in vitro oocyte maturation employed oocytes from an identical preovulatory development by applying ovum pick-up (OPU) twice (before and 24 h after the LH surge) in each cow treated for superovulation with a controlled LH surge. The embryo recovery rates at Day 7 of IVC after IVF were similar: 44% (97/219) for in vivo- vs 41% (87/213) for in vitro-matured oocytes, which shows that the natural environment during final maturation is not essential for the mere in vitro development of the prematured oocyte beyond the 8- to 16-cell stage. However, in vivo maturation appeared to contribute to the oocytes quality in a more subtle way, as indicated by a significant increase in the proportion of expanded blastocysts and a more physiological degree of chromosome aberrations of the embryos. In blastocysts derived from in vivo-matured oocytes, 21% of the embryos were mixoploid vs 50% from in vitro-matured oocytes, concomitant with a higher number of cells (96 vs 54 per normal blastocyst). The expression pattern of a set of six developmentally important genes was, however, not significantly altered in blastocysts derived from in vivo-matured oocytes. Certain deviations were observed compared with the levels of entirely in vivo-developed control blastocysts, which suggests that the beneficial effects of in vivo maturation are possibly exerted at initial stages of embryonic development. Prematuration in vivo, occurring in a dominant follicle developing from about 8 mm into the preovulatory follicle, is accompanied by changes in protein synthesis of the cumulus oocyte complex (COC). Presumably, the differentially expressed proteins are involved in equipping the oocyte with further developmental competence. Although we have unraveled some important biochemical and cellular biological features of the oocyte, further research on in vivo processes is essential to improve in vitro embryo production in practice.


Biology of Reproduction | 2003

Consequences of In Vivo Development and Subsequent Culture on Apoptosis, Cell Number, and Blastocyst Formation in Bovine Embryos

Hiemke M. Knijn; Jakob O. Gjørret; P.L.A.M. Vos; P.J.M. Hendriksen; Bert Van Der Weijden; P. Maddox-Hyttel; S.J. Dieleman

Abstract Bovine embryos produced in vitro differ considerably in quality from embryos developed in vivo. The in vitro production system profoundly affects the competence to form blastocysts, the number of cells of the total embryo and of the inner cell mass (ICM), and the incidence of apoptosis. To our knowledge, the effects of different postfertilization regimens before and after completion of the fourth embryonic cell cycle on these aspects have not yet been investigated. In the present study, we assessed the blastulation rate by stereomicroscopy and the cell number of the total embryo, of the ICM, and of the cells with apoptotic changes by confocal laser-scanning microscopy after staining with propidium iodide and TUNEL. Two groups of embryos were developed in heifers, after superovulation, until 45 or 100 h postovulation (po) and, after collection on slaughter, were further cultured in vitro until Day 7 po. A third and fourth group comprised embryos that were produced entirely in vitro or in vivo. The results indicate that passage in vivo of the fourth cell cycle does not prevent acceleration of the formation of the blastocoele in vitro but may be the critical factor contributing to a higher cell number in the total blastocyst and its ICM. The lower quality of in vitro-produced embryos can be attributed to the ICM having less viable cells because of a lower number of cells and a higher incidence of apoptosis that appears to be determined before completion of the fourth cell cycle.


Biology of Reproduction | 2001

Chromosomal Abnormalities and Developmental Kinetics in In Vivo-Developed Cattle Embryos at Days 2 to 5 after Ovulation

Dorthe Viuff; P.J.M. Hendriksen; P.L.A.M. Vos; S.J. Dieleman; Bo M. Bibby; T. Greve; Poul Hyttel; Preben Dybdahl Thomsen

Abstract The frequency of chromosome abnormalities was investigated in cattle embryos (n = 256) derived from superovulated heifers (n = 35) on Days 2, 3, 4, and 5 postovulation (PO). Interphase nuclei (n = 4358) were analyzed for chromosome abnormalities using fluorescent in situ hybridization with chromosome 6- and chromosome 7-specific probes and the developmental rate was described by scoring cell numbers. We found that 93%, 85%, 84%, and 69% of the embryos from Days 2, 3, 4, and 5 PO, respectively, displayed a normal diploid chromosome number in all cells. Of the embryos containing abnormal cells, mixoploidy was significantly more frequent than polyploidy. The percentage of mixoploidy at Days 2, 3, 4, and 5 PO was 5%, 13%, 16%, and 31%, respectively, whereas the percentages of polyploidy were 2%, 2%, 0%, and 0%, respectively. The mean number of cells per embryo was 4.7, 8, 11.5, and 48.3, respectively, at Days 2, 3, 4, and 5 PO. Thus, in vivo-developed embryos were significantly more advanced than the in vitro-produced (IVP) embryos except for Day 2. In conclusion, a significantly lower frequency of chromosomally abnormal embryos, in particular displaying polyploidy early after fertilization, was seen in in vivo versus IVP embryos, and these chromosomal abnormalities may be inherent to the process of IVP in cattle.


Theriogenology | 1999

Do X and Y spermatozoa differ in proteins

P.J.M. Hendriksen

This article reviews the current knowledge about X- and Y-chromosomal gene expression during spermatogenesis and possible differences between X- and Y-chromosome-bearing spermatozoa (X and Y sperm) in relation to whether an immunological method of separation of X and Y spermatozoa might some day be feasible. Recent studies demonstrated that X- and Y-chromosome-bearing spermatids do express X- and Y-chromosomal genes that might theoretically result in protein differences between X and Y sperm. Most, if not all, of these gene products, however, are expected to be shared among X and Y spermatids via intercellular bridges. Studies on aberrant mouse strains indicate that complete sharing might not occur for all gene products. This keeps open the possibility that X and Y sperm may differ in proteins, but until now, this has not been confirmed by comparative studies between flow-cytometrically sorted X and Y sperm for H-Y antigen or other membrane proteins.


Reproduction, Fertility and Development | 2005

In vitro and in vivo culture effects on mRNA expression of genes involved in metabolism and apoptosis in bovine embryos.

Hiemke M. Knijn; C. Wrenzycki; P.J.M. Hendriksen; P.L.A.M. Vos; E.C. Zeinstra; Gijsbert C. van der Weijden; Heiner Niemann; S.J. Dieleman

Bovine blastocysts produced in vitro differ substantially from their in vivo-derived counterparts with regard to glucose metabolism, level of apoptosis and mRNA expression patterns. Maternal embryonic genomic transition is a critical period in which these changes could be induced. The goals of the present study were twofold: (1) to identify the critical period of culture during which the differences in expression of gene transcripts involved in glucose metabolism are induced; and (2) to identify gene transcripts involved in apoptosis that are differentially expressed in in vitro- and in vivo-produced blastocysts. Relative abundances of transcripts for the glucose transporters Glut-1, Glut-3, Glut-4 and Glut-8, and transcripts involved in the apoptotic cascade, including BAX, BCL-XL, XIAP and HSP 70.1, were analysed by a semiquantitative reverse transcription-polymerase chain reaction assay in single blastocysts produced in vitro or in vivo for specific time intervals, that is, before or after maternal embryonic transition. Whether the culture environment was in vitro or in vivo affected the expression of glucose transporter transcripts Glut-3, Glut-4 and Glut-8. However, the critical period during culture responsible for these changes, before or after maternal embryonic transition, could not be determined. With the exception of XIAP, no effects of culture system on the mRNA expression patterns of BAX, BCL-XL and HSP 70.1 could be observed. These data show that expression of XIAP transcripts in expanded blastocysts is affected by in vitro culture. These findings add to the list of bovine genes aberrantly expressed in culture conditions, but do not support the hypothesis that maternal embryonic transition is critical in inducing the aberrations in gene expression patterns studied here.


Theriogenology | 2004

Effect of different stages of the follicular wave on in vitro developmental competence of bovine oocytes

P.J.M. Hendriksen; W.N.M. Steenweg; J.C Harkema; J.S Merton; M.M. Bevers; P.L.A.M. Vos; S.J. Dieleman

This study aimed to investigate the developmental competence of ovum pick-up collected oocytes on three stages of the follicular wave: Days 2, 5 and 8. A group of 11 cows was used in successive cycles to perform ovum pick-up on either Day 2, 5 or 8 of an induced follicular wave (three sessions per stage). Follicular waves were initiated by puncturing the dominant follicle and all other follicles sized > or = 5 mm at Days 5-7 of the cycle. The plasma progesterone concentrations did not differ between the days of ovum pick-up: 4.0 +/- 1.8, 5.1 +/- 1.6 and 5.2 +/- 1.7 ng/ml for Days 2, 5 and 8, respectively. The proportion of oocytes with three or more layers of non-expanded cumulus cells was higher for Day 5 than Day 8, while Days 2 and 5 did not significantly differ from each other (85, 96 and 68% of 113, 60 and 101 oocytes for Days 2, 5 and 8, respectively). The proportion of oocytes competent to develop a blastocyst in an in vitro production system was higher for Days 2 and 5 than for Day 8: 27, 29 and 15% for the oocytes with fair to good cumulus investment and 23, 27 and 11%, respectively, when all oocytes were taken in account. This indicates that the dominant follicle reduces the developmental competence of oocytes from subordinate follicles at a relatively late stage of dominance. This finding has practical consequences for the handling of cows that undergo ovum pick-up only once or very irregularly. The embryo yield can then be improved by performing the ovum pick-up at Days 2-5 of the cycle or 2-5 days after ablation of the large follicles.


Biology of Reproduction | 2003

Follicular Dynamics Around the Recruitment of the First Follicular Wave in the Cow

P.J.M. Hendriksen; Bart M. Gadella; P.L.A.M. Vos; E. Mullaart; T.A.M. Kruip; S.J. Dieleman

Abstract The present study aimed to test the generally accepted view that a follicular wave starts with follicles newly recruited from the population smaller than 3 mm, which later compete for dominance. According to this view, subordinate follicles are expected to be too atretic to join the next follicular wave. Ten cows were ovariectomized shortly prior to the LH surge, thus around the start of the first follicular wave of the cycle. Per cow, on average, 14.4 follicles of ≥3 mm were dissected. Follicular health was determined on the basis of four parameters: 1) judgment of the degree of atresia by stereomicroscope, 2) incidence of apoptotic nuclei among the granulosa cells, 3) estradiol and progesterone concentrations, and 4) insulin-like growth factor-I (IGF-I) binding proteins (IGFBPs)-2, -4, and -5 concentrations in the follicular fluid. In addition to the preovulatory follicle, 3.1 other follicles, mainly sized 3–4.5 mm, were found to be healthy based on the proportion of apoptotic nuclei, and concentrations of estradiol/progesterone, and IGFBPs. The ability of these follicles to respond with growth on the preovulatory and periovulatory FSH surges was supported by a comparison to the follicular population of four cows 31–68 h after the LH surge. The present results point to an alteration of the view on the follicular wave. The larger follicles during the first days of the follicular wave are, in general, derived from follicles that also joined the previous wave. A portion of these growing follicles are estradiol active and compete for dominance. Other growing follicles lack estradiol production and are probably derived from rather atretic follicles. The first newly recruited follicles do not reach the size of 3 mm before 31 h after the preovulatory FSH surge. At that time, the larger follicles are already competing for dominance.


Theriogenology | 2000

Bovine follicular development and its effect on the in vitro competence of oocytes.

P.J.M. Hendriksen; P.L.A.M. Vos; W.N.M. Steenweg; M.M. Bevers; S.J. Dieleman


Reproduction | 2002

Effects of oocyte maturation regimen on the relative abundance of gene transcripts in bovine blastocysts derived in vitro or in vivo

Hiemke M. Knijn; C. Wrenzycki; P.J.M. Hendriksen; P.L.A.M. Vos; D. Herrmann; G.C. van der Weijden; Heiner Niemann; S.J. Dieleman


Reproduction | 2001

Ribosomal RNA gene expression and chromosome aberrations in bovine oocytes and preimplantation embryos

Poul Hyttel; Dorthe Viuff; Trudee Fair; J. Laurincik; Preben D. Thomsen; H. Callesen; P.L.A.M. Vos; P.J.M. Hendriksen; S.J. Dieleman; Karl Schellander; U. Besenfelder; T. Greve

Collaboration


Dive into the P.J.M. Hendriksen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Poul Hyttel

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Wrenzycki

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge