Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. J. Woods is active.

Publication


Featured researches published by P. J. Woods.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000

Performance of the Recoil Mass Spectrometer and its Detector Systems at the Holifield Radioactive Ion Beam Facility

C. J. Gross; Thomas Nelson Ginter; D. Shapira; W.T. Milner; J. W. McConnell; A.N. James; J.W. Johnson; J. F. Mas; P.F. Mantica; R.L. Auble; J.J. Das; J.L. Blankenship; Jonathan H. Hamilton; R.L. Robinson; Y.A. Akovali; C. Baktash; J. C. Batchelder; Carrol R Bingham; M.J. Brinkman; H.K. Carter; R.A. Cunningham; Thomas Davinson; J.D. Fox; A. Galindo-Uribarri; R. Grzywacz; J.F. Liang; B. D. MacDonald; Jim MacKenzie; S.D. Paul; A. Piechaczek

The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K = 100, the RMS has acceptances of +/- 10% in energy and +/- 4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002

CD: A double sided silicon strip detector for radioactive nuclear beam experiments

A. N. Ostrowski; S. Cherubini; T. Davinson; D. Groombridge; A.M. Laird; A. Musumarra; A. Ninane; A. Di Pietro; A.C. Shotter; P. J. Woods

A very compact double sided silicon strip detector array is described, designed for use in reaction studies involving radioactive nuclear beams. It is small enough to fit inside a large solid angle g-detector array and will enable Dopplershift corrections at energies in the vicinity of the Coulomb barrier. The detector provides sufficient energy and time-offlight resolution for the identification of light reaction products and can be set up to cover a substantial part of the scattering angular distribution with good resolution. The device is available in thicknesses of up to 500 mm to stop all interesting reaction products. Moreover, a very thin (35–40 mm) variant of this detector is described that can be used as an energy loss detector in a DE@E telescope geometry followed by a detector that measures the residual energy. This provides additional particle identification capabilities, e.g. in light exotic nuclei induced reactions. First results from a commissioning run using a post-accelerated radioactive beam are presented. r 2002 Elsevier Science B.V. All rights reserved.


Physics Letters B | 1995

A Direct Measurement of the F-18(p,Alpha)o-15 Reaction

R. Coszach; M. Cogneau; C.R. Bain; Freddy Binon; T. Davinson; P. Decrock; Thierry Delbar; M. Gaelens; W. Galster; J. Goerres; J.S. Graulich; Rj Irvine; Daniel Labar; Pierre Leleux; Marc Loiselet; C. Michotte; R. Neal; Guido Ryckewaert; As. Shotter; J. Vanhorenbeeck; Jean Vervier; M. Wiescher; P. J. Woods

The cross section for the F-18(p,alpha) O-15 reaction has been obtained in reverse kinematics (F-18 beam on CH2 target) between 550 and 740 keV above threshold, i.e. in a region of astrophysical interest. The reaction yield is dominated by a wide resonant state whose spin, parity, total width and partial widths were deduced from the analysis of the alpha-particle and elastic proton data.


Physics Letters B | 2013

High-resolution measurement of the time-modulated orbital electron capture and of the β+ decay of hydrogen-like 142Pm60+ ions

P. Kienle; F. Bosch; P. Bühler; T. Faestermann; Yu. A. Litvinov; N. Winckler; M. S. Sanjari; Daria Shubina; Dinko Atanasov; H. Geissel; V. Ivanova; X.L. Yan; D. Boutin; C. Brandau; I. Dillmann; Ch. Dimopoulou; R Hess; P.-M. Hillebrand; T. Izumikawa; R. Knöbel; J. Kurcewicz; N. Kuzminchuk; M. Lestinsky; S. Litvinov; X. W. Ma; L. Maier; M. Mazzocco; I. Mukha; C. Nociforo; F. Nolden

Abstract The periodic time modulations, found recently in the two-body orbital electron capture (EC) decay of both, hydrogen-like 140Pr58+ and 142Pm60+ ions, with periods near to 7 s and amplitudes of about 20%, were re-investigated for the case of 142Pm60+ by using a 245 MHz resonator cavity with a much improved sensitivity and time resolution. We observed that the exponential EC decay is modulated with a period T = 7.11 ( 11 ) s , in accordance with a modulation period T = 7.12 ( 11 ) s as obtained from simultaneous observations with a capacitive pick-up, employed also in the previous experiments. The modulation amplitudes amount to a R = 0.107 ( 24 ) and a P = 0.134 ( 27 ) for the 245 MHz resonator and the capacitive pick-up, respectively. These new results corroborate for both detectors exactly our previous findings of modulation periods near to 7 s , though with distinctly smaller amplitudes. Also the three-body β + decays have been analyzed. For a supposed modulation period near to 7 s we found an amplitude a = 0.027 ( 27 ) , compatible with a = 0 and in agreement with the preliminary result a = 0.030 ( 30 ) of our previous experiment. These observations could point at weak interaction as origin of the observed 7 s -modulation of the EC decay. Furthermore, the data suggest that interference terms occur in the two-body EC decay, although the neutrinos are not directly observed.


Physics Letters B | 1996

Two proton emission induced via a resonance reaction

C.R. Bain; P. J. Woods; R. Coszach; Thomas Davinson; P. Decrock; M. Gaelens; W. Galster; M. Huyse; Rj Irvine; Pierre Leleux; E. Lienard; Marc Loiselet; C. Michotte; R. Neal; A. Ninane; Guido Ryckewaert; A.C. Shotter; G. Vancraeynest; Jean Vervier; J. Wauters

A radioactive beam of N-13 ions was used to bombard a (CH2)(n) target in order to populate a narrow resonance at 7.77 MeV in O-14. A weak two proton decay branch was observed with a width of 125 +/- 20 eV which occurs predominantly by a sequential mechanism. A limit for He-2 emission of Gamma(2He) < 6 eV is compared with calculations.


Physical Review C | 2013

Schottky mass measurements of heavy neutron-rich nuclides in the element range 70 <= Z <= 79 at the GSI Experimental Storage Ring

Daria Shubina; Burcu R. Cakirli; Yuri A. Litvinov; Klaus Blaum; C. Brandau; F. Bosch; J.J. Carroll; R. F. Casten; D. M. Cullen; I. J. Cullen; A. Y. Deo; B. Detwiler; C. Dimopoulou; F. Farinon; H. Geissel; E. Haettner; M. Heil; R.S. Kempley; C. Kozhuharov; R. Knöbel; J. Kurcewicz; N. Kuzminchuk; S. Litvinov; Z. Liu; R. S. Mao; C. Nociforo; F. Nolden; Z. Patyk; W. R. Plass; A. Prochazka

D. Shubina, 2, 3 R.B. Cakirli, 4 Yu.A. Litvinov, 3 K. Blaum, C. Brandau, 5 F. Bosch, J.J. Carroll, R.F. Casten, D.M. Cullen, I.J. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, F. Farinon, H. Geissel, 11 E. Haettner, M. Heil, R.S. Kempley, C. Kozhuharov, R. Knobel, J. Kurcewicz, N. Kuzminchuk, S.A. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, Z. Patyk, W.R. Plass, A. Prochazka, M.W. Reed, 15 M.S. Sanjari, 16 C. Scheidenberger, 11 M. Steck, Th. Stohlker, 17, 18 B. Sun, 19 T.P.D. Swan, G. Trees, P.M. Walker, 20 H. Weick, N. Winckler, 3 M. Winkler, P.J. Woods, T. Yamaguchi, and C. Zhou Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Fakultat fur Physik und Astronomie, Universitat Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany GSI Helmholtzzentrum fur Schwerionenforschung, Planckstrase 1, 64291 Darmstadt, Germany Department of Physics, University of Istanbul, Istanbul, Turkey ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fur Schwerionenforschung, 64291 Darmstadt, Germany US Army Research Laboratory, 2800 Powder Mill Road, Adelphi MD, USA Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom Youngstown State University, One University Plaza, Youngstown, Ohio 44555, USA II Physikalisches Institut, Justus-Liebig-Universitat Giesen, 35392 Giesen, Germany School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China National Centre for Nuclear Research, PL-00681 Warsaw, Poland Department of Nuclear Physics, R.S.P.E., Australian National University, Canberra ACT 0200, Australia Goethe-Universitat Frankfurt, 60438 Frankfurt, Germany Friedrich-Schiller-Universitat Jena, 07737 Jena, Germany Helmholtz-Institut Jena, 07743 Jena, Germany School of Physics and Nuclear Energy Engineering, Beihang University, 100191 Beijing, PRC CERN, CH-1211 Geneva 23, Switzerland Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan Storage-ring mass spectrometry was applied to neutron-rich Au projectile fragments. Masses of Lu, Hf, Ta, W, and Re nuclei were measured for the first time. The uncertainty of previously known masses of W and Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.


Physical Review C | 2008

Proton-proton correlations observed in two-proton decay of 19Mg and 16Ne

I. Mukha; L. V. Grigorenko; K. Sümmerer; L. Acosta; M. A. G. Alvarez; E. Casarejos; A. Chatillon; D. Cortina-Gil; J. M. Espino; A. S. Fomichev; J. E. Garcia-Ramos; H. Geissel; J. Gómez-Camacho; J. Hofmann; O. Kiselev; A. A. Korsheninnikov; N. Kurz; Yu. Litvinov; I. Martel; C. Nociforo; W. Ott; M. Pfützner; C. Rodriguez-Tajes; E. Roeckl; M. Stanoiu; H. Weick; P. J. Woods

Proton-proton correlations were observed for the two-proton decays of the ground states of 19 Mg and 16 Ne. The trajectories of the respective decay products, 17 Ne + p + p and 14 O + p + p, were measured by using a tracking technique with microstrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the sd shell.


Physics Letters B | 2002

Alpha decay of 114Ba

C. Mazzocchi; Z. Janas; L. Batist; V. Belleguic; J. Döring; M. Gierlik; M. Kapica; R. Kirchner; G.A. Lalazissis; H. Mahmud; E. Roeckl; P. Ring; Karen Schmidt; P. J. Woods; J. Żylicz

The neutron-deficient isotope 114Ba was produced in a fusion evaporation reaction at the GSI On-Line Mass Separator. We measured the α-particle energy of 114Ba, the half-life of its daughter nucleus 110Xe, and the α-decay branching ratios for 114Ba, 110Xe and 106Te.


Nuclear Physics | 1997

The 18F(p,α) reaction and its astrophysical implications

J.S. Graulich; Freddy Binon; W. Bradfield-Smith; M. Cogneau; R. Coszach; T. Davinson; Thierry Delbar; M. Gaelens; W. Galster; J. Görres; Daniel Labar; P. Leleux; Marc Loiselet; J. H. McKenzie; R. Neal; Guido Ryckewaert; A.C. Shotter; J. Vanhorenbeeck; Jean Vervier; M. Wiescher; P. J. Woods

F-18 radioactive beams were used to measure the F-18(p,alpha) reaction in the c.m. energy ranges of 265-535 keV and 550-740 keV. In each case, a resonant level was clearly detected, of which the resonant strength and some other properties were deduced. The astrophysical reaction rate was calculated down to the novae peak temperature. Consequences for the hot CNO cycles were drawn


Physical Review C | 2005

New constraints on the 18F(p,α) 15O rate in novae from the (d, p) reaction

R. L. Kozub; D. W. Bardayan; Jon Charles Batchelder; Jeffery Curtis Blackmon; C. R. Brune; Arthur E. Champagne; J. A. Cizewski; T. Davinson; U. Greife; C. J. Gross; C. C. Jewett; R. J. Livesay; Z. Ma; B.H. Moazen; C.D. Nesaraja; L. Sahin; J. P. Scott; D. Shapira; M. S. Smith; J. S. Thomas; P. J. Woods

The degree to which the (p,gamma) and (p,alpha) reactions destroy 18F at temperatures 1-4x10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide 18F, a target of gamma-ray astronomy, as a diagnostic of nova mechanisms. The reactions are dominated by low-lying proton resonances near the 18F+p threshold (E_x=6.411 MeV in 19Ne). To gain further information about these resonances, we have used a radioactive 18F beam from the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in 19F via the inverse d(18F,p)19F neutron transfer reaction. Neutron spectroscopic factors were measured for states in 19F in the excitation energy range 0-9 MeV. Widths for corresponding proton resonances in 19Ne were calculated using a Woods-Saxon potential. The results imply significantly lower 18F(p,gamma)19Ne and 18F(p,alpha)15O reaction rates than reported previously, thereby increasing the prospect of observing the 511-keV annihilation radiation associated with the decay of 18F in the ashes ejected from novae.

Collaboration


Dive into the P. J. Woods's collaboration.

Top Co-Authors

Avatar

T. Davinson

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

D. Seweryniak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. Carpenter

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A.C. Shotter

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

G. Lotay

University of Surrey

View shared research outputs
Top Co-Authors

Avatar

C. N. Davids

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. V. F. Janssens

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. D. Page

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

C. J. Lister

University of Massachusetts Lowell

View shared research outputs
Researchain Logo
Decentralizing Knowledge