Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Kern is active.

Publication


Featured researches published by P. Kern.


Astronomy and Astrophysics | 2007

AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument

Romain G. Petrov; F. Malbet; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; M. Dugué; G. Duvert; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; F. Millour; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; Piero Salinari; E. Tatulli; G. Zins; M. Accardo; B. Acke; K. Agabi; E. Altariba; B. Arezki; E. Aristidi

Context: Optical long-baseline interferometry is moving a crucial step forward with the advent of general-user scientific instruments that equip large aperture and hectometric baseline facilities, such as the Very Large Telescope Interferometer (VLTI). Aims: AMBER is one of the VLTI instruments that combines up to three beams with low, moderate and high spectral resolutions in order to provide milli-arcsecond spatial resolution for compact astrophysical sources in the near-infrared wavelength domain. Its main specifications are based on three key programs on young stellar objects, active galactic nuclei central regions, masses, and spectra of hot extra-solar planets. Methods: These key science goals led to scientific specifications, which were used to propose and then validate the instrument concept. AMBER uses single-mode fibers to filter the entrance signal and to reach highly accurate, multiaxial three-beam combination, yielding three baselines and a closure phase, three spectral dispersive elements, and specific self-calibration procedures. Results: The AMBER measurements yield spectrally dispersed calibrated visibilities, color-differential complex visibilities, and a closure phase allows astronomers to contemplate rudimentary imaging and highly accurate visibility and phase differential measurements. AMBER was installed in 2004 at the Paranal Observatory. We describe here the present implementation of the instrument in the configuration with which the astronomical community can access it. Conclusions: .After two years of commissioning tests and preliminary observations, AMBER has produced its first refereed publications, allowing assessment of its scientific potential.


Astronomical Telescopes and Instrumentation | 2003

NAOS, the first AO system of the VLT: on-sky performance

Gerard Rousset; Francois Lacombe; Pascal Puget; Norbert Hubin; Eric Gendron; Thierry Fusco; Robin Arsenault; Julien Charton; Philippe Feautrier; Pierre Gigan; P. Kern; Anne-Marie Lagrange; Pierre-Yves Madec; David Mouillet; Didier Rabaud; Patrick Rabou; Eric Stadler; G. Zins

NAOS is the first adaptive optics system installed at the VLT 8m telescopes. It was designed, manufactured and tested by a french Consortium under an ESO contract, to provide compensated images to the high angular resolution IR spectro-imaging camera (CONICA) in the 1 to 5 μm spectral range. It is equipped with a 185 actuator deformable mirror, a tip/tilt mirror and two wavefront sensors, one in the visible and one in the near IR spectral range. It has been installed in November at the Nasmyth focus B of the VLT UT4. During the first light run in December 2001, NAOS has delivered a Strehl ratio of 50 under average seeing conditions for bright guide stars. The diffraction limit of the telescope has been achieved at 2.2 μm. The closed loop operation has been very robust under bad seeing conditions. It was also possible to obtain a substantial correction with mV=17.6 and mK=13.1 reference stars. The on-sky acceptance tests of NAOS-CONICA were completed in May 2002 and the instrument will be made available to the European astronomical community in October by ESO. This paper describes the system and present the on-sky performance in terms of Strehl ratio, seeing conditions and guide star magnitude.


Astronomy and Astrophysics | 2007

Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration

E. Tatulli; F. Millour; A. Chelli; G. Duvert; B. Acke; O. Hernandez Utrera; Karl-Heinz Hofmann; Stefan Kraus; Fabien Malbet; P. Mège; Romain G. Petrov; Martin Vannier; G. Zins; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; M. Accardo

Aims. In this paper, we present an innovative data reduction method for single-mode interferometry. It has been specifically developed for the AMBER instrument, the three-beam combiner of the Very Large Telescope Interferometer, but it can be derived for any single-mode interferometer. Methods. The algorithm is based on a direct modelling of the fringes in the detector plane. As such, it requires a preliminary calibration of the instrument in order to obtain the calibration matrix that builds the linear relationship between the interferogram and the interferometric observable, which is the complex visibility. Once the calibration procedure has been performed, the signal processing appears to be a classical least-square determination of a linear inverse problem. From the estimated complex visibility, we derive the squared visibility, the closure phase, and the spectral differential phase. Results. The data reduction procedures have been gathered into the so-called amdlib software, now available for the community, and are presented in this paper. Furthermore, each step in this original algorithm is illustrated and discussed from various on-sky observations conducted with the VLTI, with a focus on the control of the data quality and the effective execution of the data reduction procedures. We point out the present limited performances of the instrument due to VLTI instrumental vibrations which are difficult to calibrate.


Astronomy and Astrophysics | 2011

PIONIER: a 4-telescope visitor instrument at VLTI

J.-B. Le Bouquin; J. Berger; B. Lazareff; G. Zins; P. Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; Pierre Bourget; A. Delboulbé; Philippe Feautrier; M. Germain; Philippe B. Gitton; D. Gillier; M. Kiekebusch; J. Kluska; Jens Knudstrup; Pierre Labeye; J.-L. Lizon; Jean-Louis Monin; Y. Magnard; F. Malbet; D. Maurel; Francois Menard

PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.


Nature Photonics | 2007

Wavelength-scale stationary-wave integrated Fourier-transform spectrometry

Etienne Le Coarer; Sylvain Blaize; Pierre Benech; Ilan Stefanon; Alain Morand; Gilles Lerondel; Gregory Leblond; P. Kern; Jean Marc Fedeli; Pascal Royer

Spectrometry is a general physical-analysis approach for investigating light-matter interactions. However, the complex designs of existing spectrometers render them resistant to simplification and miniaturization, both of which are vital for applications in micro- and nanotechnology and which are now undergoing intensive research. Stationary-wave integrated Fourier-transform spectrometry (SWIFTS)-an approach based on direct intensity detection of a standing wave resulting from either reflection (as in the principle of colour photography by Gabriel Lippmann) or counterpropagative interference phenomenon-is expected to be able to overcome this drawback. Here, we present a SWIFTS-based spectrometer relying on an original optical near-field detection method in which optical nanoprobes are used to sample directly the evanescent standing wave in the waveguide. Combined with integrated optics, we report a way of reducing the volume of the spectrometer to a few hundreds of cubic wavelengths. This is the first attempt, using SWIFTS, to produce a very small integrated one-dimensional spectrometer suitable for applications where microspectrometers are essential.


Optics Express | 2009

Astrophotonics: a new era for astronomical instruments

Joss Bland-Hawthorn; P. Kern

Astrophotonics lies at the interface of astronomy and photonics. This burgeoning field has emerged over the past decade in response to the increasing demands of astronomical instrumentation. Early successes include: (i) planar waveguides to combine signals from widely spaced telescopes in stellar interferometry; (ii) frequency combs for ultra-high precision spectroscopy to detect planets around nearby stars; (iii) ultra-broadband fibre Bragg gratings to suppress unwanted background; (iv) photonic lanterns that allow single-mode behaviour within a multimode fibre; (v) planar waveguides to miniaturize astronomical spectrographs; (vi) large mode area fibres to generate artificial stars in the upper atmosphere for adaptive optics correction; (vii) liquid crystal polymers in optical vortex coronographs and adaptive optics systems. Astrophotonics, a field that has already created new photonic capabilities, is now extending its reach down to the Rayleigh scattering limit at ultraviolet wavelengths, and out to mid infrared wavelengths beyond 2500 nm.


Astronomy and Astrophysics | 2007

Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLTI/AMBER

Fabien Malbet; M. Benisty; W. J. de Wit; S. Kraus; A. Meilland; F. Millour; E. Tatulli; J.-P. Berger; O. Chesneau; Karl-Heinz Hofmann; Andrea Isella; A. Natta; Romain G. Petrov; Thomas Preibisch; P. Stee; L. Testi; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; G. Duvert; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; Sylvie Robbe-Dubois; A. Roussel

The young stellar object MWC 297 is an embedded B1.5Ve star exhibiting strong hydrogen emission lines and a strong near-infrared continuum excess. This object has been observed with the VLT interferometer equipped with the AMBER instrument during its first commissioning run. VLTI/AMBER is currently the only near infrared interferometer which can observe spectrally dispersed visibilities. MWC 297 has been spatially resolved in the continuum with a visibility of


Astronomy and Astrophysics | 2001

Integrated optics for astronomical interferometry IV. First measurements of stars

Jean-Philippe Berger; P. Haguenauer; P. Kern; K. Perraut; Fabien Malbet; I. Schanen; M. Severi; R. Millan-Gabet; Wesley A. Traub

0.50^{+0.08}_{-0.10}


Astronomy & Astrophysics Supplement Series | 1999

INTEGRATED OPTICS FOR ASTRONOMICAL INTERFEROMETRY. I. CONCEPT AND ASTRONOMICAL APPLICATIONS

Fabien Malbet; P. Kern; Isabelle Schanen-Duport; Jean-Philippe Berger; Karine Rousselet-Perraut; Pierre Benech

as well as in the Brgamma emission line where the visibility decrease to a lower value of


The Astrophysical Journal | 2006

First Surface-resolved Results with the Infrared Optical Telescope Array Imaging Interferometer: Detection of Asymmetries in Asymptotic Giant Branch Stars

S. Ragland; Wesley A. Traub; J.-P. Berger; W. C. Danchi; John D. Monnier; Lee Anne M. Willson; N. P. Carleton; Marc G. Lacasse; R. Millan-Gabet; Ettore Pedretti; F. P. Schloerb; W. D. Cotton; C. H. Townes; Michael K. Brewer; Pierre Haguenauer; P. Kern; P. Labeye; Fabien Malbet; D. Malin; M. Pearlman; K. Perraut; Kamal Souccar; Gary Wallace

0.33\pm0.06

Collaboration


Dive into the P. Kern's collaboration.

Top Co-Authors

Avatar

Fabien Malbet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Berger

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Pierre Labeye

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

L. Jocou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Feautrier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

R. Millan-Gabet

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wesley A. Traub

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Delboulbé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Karine Rousselet-Perraut

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fabien Malbet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge