Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. M. Chadwick is active.

Publication


Featured researches published by P. M. Chadwick.


The Astrophysical Journal | 2006

The H.E.S.S. Survey of the inner galaxy in very high energy gamma rays.

F. Aharonian; A. G. Akhperjanian; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; K. Bernlöhr; C. Boisson; O. Bolz; V. Borrel; I. Braun; F. Breitling; A. M. Brown; P. M. Chadwick; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; H.J. Dickinson; A. Djannati-Ataï; Luke O'c. Drury; G. Dubus; D. Emmanoulopoulos; P. Espigat; F. Feinstein; G. Fontaine; Y. Fuchs; S. Funk; Y. A. Gallant; B. Giebels

We report on a survey of the inner part of the Galactic Plane in very high energy gamma-rays, with the H.E.S.S. Cherenkov telescope system. The Galactic Plane between +-30deg in longitude and +-3deg in latitude relative to the Galactic Centre was observed in 500 pointings for a total of 230 hours, reaching an average flux sensitivity of 2% of the Crab Nebula at energies above 200 GeV. Fourteen previously unknown sources were detected at a significance level greater than 4 sigma after accounting for all trials involved in the search. Initial results on the eight most significant of these sources were already reported elsewhere. Here we present detailed spectral and morphological information for all the new sources, along with a discussion on possible counterparts in other wavelength bands. The distribution in Galactic latitude of the detected sources appears to be consistent with a scale height in the Galactic disk for the parent population smaller than 100 pc, consistent with expectations for supernova remnants and/or pulsar wind nebulae.We report on a survey of the inner part of the Galactic plane in very high energy gamma rays with the H.E.S.S. Cerenkov telescope system. The Galactic plane between +/-30° in longitude and +/-3° in latitude relative to the Galactic center was observed in 500 pointings for a total of 230 hr, reaching an average flux sensitivity of 2% of the Crab Nebula at energies above 200 GeV. Fourteen previously unknown sources were detected at a significance level greater than 4 σ after accounting for all trials involved in the search. Initial results on the eight most significant of these sources were already reported elsewhere (Aharonian and coworkers). Here we present detailed spectral and morphological information for all the new sources, along with a discussion on possible counterparts in other wavelength bands. The distribution in Galactic latitude of the detected sources appears to be consistent with a scale height in the Galactic disk for the parent population smaller than 100 pc, consistent with expectations for supernova remnants and/or pulsar wind nebulae.


Nature | 2004

High-energy particle acceleration in the shell of a supernova remnant

F. Aharonian; A. G. Akhperjanian; K.-M. Aye; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; P. Berghaus; K. Bernlöhr; O. Bolz; C. Boisson; C. Borgmeier; F. Breitling; A. M. Brown; Jb Gordo; P. M. Chadwick; V. R. Chitnis; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; A. Djannati-Ataï; Luke O'c. Drury; T. Ergin; P. Espigat; F. Feinstein; P. Fleury; G. Fontaine; S. Funk; Y.A. Gallant

A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy γ-rays of TeV energies (1 TeV = 1012 eV). We present a TeV γ-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.


Nature | 2006

Discovery of very-high-energy |[gamma]|-rays from the Galactic Centre ridge

F. Aharonian; A. G. Akhperjanian; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; V. Borrel; K. Bernlöhr; C. Boisson; O. Bolz; J.F. Glicenstein; F. Breitling; A. M. Brown; H.J. Dickinson; P. M. Chadwick; I. Braun; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; A. Djannati-Ataï; L. O'c. Drury; D. Emmanoulopoulos; G. Dubus; P. Espigat; F. Feinstein; G. Fontaine; S. Funk; Y.A. Gallant; B. Giebels

The source of Galactic cosmic rays (with energies up to 1015 eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the γ-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 1011 eV) γ-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the γ-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the γ-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 104 years ago.


web science | 2004

Very high energy gamma rays from the direction of Sagittarius A

F. Aharonian; A. G. Akhperjanian; K.-M. Aye; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; P. Berghaus; K. Bernlöhr; O. Bolz; C. Boisson; C. Borgneier; F. Breitling; A. M. Brown; J. Bussons Gordo; P. M. Chadwick; V.R. Chitnis; L.-M. Chounet; R. Cornils; B. Degrange; A. Djannati-Ataï; L. O'c. Drury; T. Ergin; P. Espigat; F. Feinstein; P. Fleury; G. Fontaine; S. Funk; Y.A. Gallant; B. Giebels

H.E.S.S. – the High Energy Stereoscopic System– is a new system of large atmospheric Cherenkov telescopes for GeV/TeV astronomy. Each of the four telescopes of 107 m mirror area is equipped with a 960-pixel photomulitiplier-tube camera. This paper describes the methods used to convert the photomultiplier signals into the quantities needed for Cherenkov image analysis. Two independent calibration techniques have been applied in parallel to provide an estimation of uncertainties. Results on the long-term stability of the H.E.S.S. cameras are also presented.


web science | 2006

A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS

F. Aharonian; A. G. Akhperjanian; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; K. Bernlöhr; C. Boisson; O. Bolz; V. Borrel; I. Braun; F. Breitling; A. M. Brown; P. M. Chadwick; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; H.J. Dickinson; A. Djannati-Ataï; L Drury O'c.; G. Dubus; D. Emmanoulopoulos; P. Espigat; F. Feinstein; G. Fontaine; Y. Fuchs; S. Funk; Y.A. Gallant; B. Giebels

We present results from deep observations of the Galactic shell-type supernova remnant (SNR) RX J1713.7-3946 (also known as G347.3-0.5) conducted with the complete H.E.S.S. array in 2004. Detailed morphological and spatially resolved spectral studies reveal the very-high-energy (VHE -- Energies E > 100 GeV) gamma-ray aspects of this object with unprecedented precision. Since this is the first in-depth analysis of an extended VHE gamma-ray source, we present a thorough discussion of our methodology and investigations of possible sources of systematic errors. Gamma rays are detected throughout the whole SNR. The emission is found to resemble a shell structure with increased fluxes from the western and northwestern parts. The differential gamma-ray spectrum of the whole SNR is measured over more than two orders of magnitude, from 190 GeV to 40 TeV, and is rather hard with indications for a deviation from a pure power law at high energies. Spectra have also been determined for spatially separated regions of RX J1713.7-3946. The flux values vary by more than a factor of two, but no significant change in spectral shape is found. There is a striking correlation between the X-ray and the gamma-ray image. Radial profiles in both wavelength regimes reveal the same shape almost everywhere in the region of the SNR. The VHE gamma-ray emission of RX J1713.7-3946 is phenomenologically discussed for two scenarios, one where the gamma rays are produced by VHE electrons via Inverse Compton scattering and one where the gamma rays are due to neutral pion decay from proton-proton interactions. In conjunction with multi-wavelength considerations, the latter case is favoured. However, no decisive conclusions can yet be drawn regarding the parent particle population dominantly responsible for the gamma-ray emission from RX J1713.7-3946.We present results from deep observations of the Galactic shell-type supernova remnant (SNR) RX J1713.7-3946 (also known as G347.3-0.5) conducted with the complete H.E.S.S. array in 2004. Detailed morphological and spatially resolved spectral studies reveal the very-high-energy (VHE -- Energies E>100 GeV) gamma-ray aspects of this object with unprecedented precision. Since this is the first in-depth analysis of an extended VHE gamma-ray source, we present a thorough discussion of our methodology and investigations of possible sources of systematic errors. Gamma rays are detected throughout the whole SNR. The emission is found to resemble a shell structure with increased fluxes from the western and northwestern parts. The differential gamma-ray spectrum of the whole SNR is measured over more than two orders of magnitude, from 190 GeV to 40 TeV, and is rather hard with indications for a deviation from a pure power law at high energies. Spectra have also been determined for spatially separated regions of RX J1713.7-3946. The flux values vary by more than a factor of two, but no significant change in spectral shape is found. There is a striking correlation between the X-ray and the gamma-ray image. Radial profiles in both wavelength regimes reveal the same shape almost everywhere in the region of the SNR. The VHE gamma-ray emission of RX J1713.7-3946 is phenomenologically discussed for two scenarios, one where the gamma rays are produced by VHE electrons via Inverse Compton scattering and one where the gamma rays are due to neutral pion decay from proton-proton interactions. In conjunction with multi-wavelength considerations, the latter case is favoured. However, no decisive conclusions can yet be drawn regarding the parent particle population dominantly responsible for the gamma-ray emission from RX J1713.7-3946.


Science | 2005

A New Population of Very High Energy Gamma-Ray Sources in the Milky Way

F. Aharonian; A. G. Akhperjanian; K.-M. Aye; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; P. Berghaus; K. Bernlöhr; C. Boisson; O. Bolz; C. Borgmeier; I. Braun; F. Breitling; A. M. Brown; J. Bussons Gordo; P. M. Chadwick; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; A. Djannati-Ataï; L. O'c. Drury; G. Dubus; T. Ergin; P. Espigat; F. Feinstein; P. Fleury; G. Fontaine; S. Funk

Very high energy γ-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy γ-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of “dark” nucleonic cosmic ray sources.


The Astrophysical Journal | 1999

Very High Energy Gamma Rays from PKS 2155–304

P. M. Chadwick; K. Lyons; T. J. L. McComb; K. J. Orford; J. L. Osborne; S. M. Rayner; S. E. Shaw; K. E. Turver; G.J. Wieczorek

The close X-ray-selected BL Lac PKS 2155-304 has been observed using the University of Durham Mark 6 very high energy (VHE) gamma-ray telescope during 1996 September/October/November and 1997 October/November. VHE gamma rays with energy more than 300 GeV were detected from this object with a time-averaged integral flux of (4.2±0.7stat±2.0sys)×10−11 cm-2 s-1. There is evidence for VHE gamma-ray emission during our observations in 1996 September and 1997 October/November, with the strongest emission being detected in 1997 November, when the object was producing the largest flux ever recorded in high-energy X-rays and it was detected as a source of gamma rays of energy greater than 100 MeV. The VHE and X-ray fluxes show evidence of a correlation.


web science | 2005

Detection of TeV gamma-ray emission from the Shell-Type Supernova Remnant RX J0852.0-4622 with H.E.S.S.

F. Aharonian; A. G. Akhperjanian; V. Borrel; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; Y. Fuchs; D. Berge; K. Bernlöhr; O. Bolz; C. Boisson; J.F. Glicenstein; F. Breitling; A. M. Brown; H.J. Dickinson; P. M. Chadwick; I. Braun; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; A. Djannati-Ataï; L. O'c. Drury; D. Emmanoulopoulos; P. Espigat; F. Feinstein; G. Dubus; G. Fontaine; S. Funk; Y.A. Gallant

We report the detection of TeV


web science | 2005

H.E.S.S. observations of PKS 2155-304

F. Aharonian; A. G. Akhperjanian; K.-M. Aye; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; P. Berghaus; K. Bernlöhr; O. Bolz; C. Boisson; C. Borgmeier; F. Breitling; A. M. Brown; J. Bussons Gordo; P. M. Chadwick; V.R. Chitnis; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; A. Djannati-Ataï; L. O'c. Drury; T. Ergin; P. Espigat; F. Feinstein; P. Fleury; G. Fontaine; S. Funk; Y.A. Gallant

\gamma


Astroparticle Physics | 2004

Calibration of cameras of the H.E.S.S. detector

F. Aharonian; A. G. Akhperjanian; K.-M. Aye; A. R. Bazer-Bachi; M. Beilicke; W. Benbow; D. Berge; P. Berghaus; K. Bernlöhr; O. Bolz; C. Boisson; C. Borgmeier; F. Breitling; A. M. Brown; P. M. Chadwick; V.R. Chitnis; L.-M. Chounet; R. Cornils; L. Costamante; B. Degrange; O. C. de Jager; A. Djannati-Ataï; Luke O'c. Drury; T. Ergin; P. Espigat; F. Feinstein; P. Fleury; G. Fontaine; S. Funk; Y.A. Gallant

-rays from the shell-type supernova remnant RX J0852.0-4622 with data of 3.2 h of live time recorded with H.E.S.S. in February 2004. An excess of (700

Collaboration


Dive into the P. M. Chadwick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. K. Daniel

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge