Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Maestro is active.

Publication


Featured researches published by P. Maestro.


The Astrophysical Journal | 2010

DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

H. S. Ahn; P. Allison; M. G. Bagliesi; J. J. Beatty; G. Bigongiari; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; M.H. Lee; L. Lutz; P. Maestro; A. Malinin; P.S. Marrocchesi; S. Minnick; S. I. Mognet; J. Nam; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina; J. Wu; J. Yang; Y.S. Yoon

The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of ~70 days, which indicate hardening of the elemental spectra above ~200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at ~1015 eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.


The Astrophysical Journal | 2011

Cosmic-ray Proton and Helium Spectra from the First CREAM Flight

Y.S. Yoon; H. S. Ahn; P. Allison; M. G. Bagliesi; J. J. Beatty; G. Bigongiari; P. J. Boyle; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; M.H. Lee; L. Lutz; P. Maestro; A. Malinine; P.S. Marrocchesi; S. Minnick; S. I. Mognet; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina; Simon P. Swordy; S. P. Wakely

Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004–2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of �38.5 km with an average atmospheric overburden of �3.9 g cm −2 . Individual elements are clearly separated with a charge resolution of �0.15 e (in charge units) and �0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of 2.66 ± 0.02 for protons from 2.5 TeV to 250 TeV and –2.58 ± 0.02 for helium nuclei from 630 GeV nucleon −1 to 63 TeV nucleon −1 . They are harder than previous measurements


The Astrophysical Journal | 2009

ENERGY SPECTRA OF COSMIC-RAY NUCLEI AT HIGH ENERGIES

H. S. Ahn; P. Allison; M. G. Bagliesi; Loius M. Barbier; J. J. Beatty; G. Bigongiari; T. J. Brandt; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; M.H. Lee; P. Maestro; A. Malinine; P.S. Marrocchesi; S. Minnick; S. I. Mognet; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina; P. Walpole; J. Wu; J. Yang

We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to ~1014 eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E –2.66 ± 0.04 power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 ± 0.025 (stat.)±0.025 (sys.) at ~800 GeV/n, in good agreement with a recent result from the first CREAM flight.


SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1998

Performance of a 4096-pixel photon counting chip

Maria Giuseppina Bisogni; M. Campbell; Maurizio Conti; Pasquale Delogu; Maria Evelina Fantacci; E.H.M. Heijne; P. Maestro; G. Magistrati; V. Marzulli; G. Meddeler; B Mikulec; E. Pernigotti; V. Rosso; C. Schwarz; W. Snoeys; S. Stumbo; J. Watt

A 4096 pixel Photon Counting Chip (PCC) has been developed and tested. It is aimed primarily at medical imaging although it can be used for other applications involving particle counting. The readout chip consists of a matrix of 64 by 64 identical square pixels, whose side measures 170 micrometers and is bump-bonded to a similar matrix of GaAs or Si pixel diodes covering a sensitive area of 1.18 cm2. The electronics in each cell comprises a preamplifier, a discriminator with variable threshold and a 3-bit threshold tune as well as a 15-bit counter. Each pixel can be individually addressed for electrical test or masked during acquisition. A shutter allows for switching between the counting and readout modes and the use of static logic in the counter enables long data taking periods. Electrical test of the chip have shown a maximum counting and readout modes and the use of static logic in the counter enables long data taking periods. Electrical test of the chip have shown a maximum counting rate of up to 2 MHz in each pixel. The minimum reachable threshold is 1400 e with a variation of 350 e rms that can be reduced to 80 e rms after tuning with the 3-bit adjustment. Electrical noise at the input is 170 e rms. Several read-out chips have been bump bonded to 200 micrometers thick GaAs pixel detectors. Test with (gamma) -ray and (beta) sources have been carried out. A number of objects have been imaged and a 260 micrometers thick aluminum foil which represents a contrast to the surrounding air of only 1.9 percent has been correctly imaged.


Nuclear Physics B - Proceedings Supplements | 2002

The AMS-02 electromagnetic calorimeter

F. Cadoux; F. Cervelli; V. Chambert-Hermel; Gen Chen; H.S. Chen; G. Coignet; S. Di Falco; J.M. Dubois; E. Falchini; A. Franzoso; D. Fougeron; N. Fouque; S. Galeotti; L. Girard; C. Goy; R. Hermel; M. Incagli; R. Kossakowski; B. Lieunard; Y. Liu; Z. Liu; T. Lomtadze; P. Maestro; P.S. Marrocchesi; R. Paoletti; F. Pilo; S. Rosier-Lees; F. Spinella; N. Turini; G. Valle

Abstract The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a lead-scintillanting fibers sampling calorimeter characterized by high granularity that allows to image the longitudinal and lateral showers development, a key issue to provide high electron/hadron discrimination. The light collection system and the FE electronics are designed to let the calorimeter operate over a wide energy range from few GeV up to 1 TeV. A full-scale prototype of the e.m. calorimeter was tested at Cern in October 2001 using electrons and pions beams with energy ranging from 3 to 100 GeV. Effective sampling thickness, linearity and energy resolution were measured.


nuclear science symposium and medical imaging conference | 1999

Low contrast imaging with a GaAs pixel digital detector

S.R. Amendolia; Maria Giuseppina Bisogni; U. Bottigli; M. A. Ciocci; Pasquale Delogu; Giovanna Dipasquale; Maria Evelina Fantacci; Michele Faucci Giannelli; P. Maestro; Vincenzo M. Marzulli; E. Pernigotti; V. Rosso; Arnaldo Stefanini; S. Stumbo

A digital mammography system based on a GaAs pixel detector has been developed by the INFN (Istituto Nazionale di Fisica Nucleare) collaboration MED46. The high atomic number makes the GaAs a very efficient material for low energy X-ray detection (10-30 keV is the typical energy range used in mammography). Low contrast details can be detected with a significant dose reduction to the patient. The system presented in this paper consists of a 4096 pixel matrix built on a 200 /spl mu/m thick semi-insulating GaAs substrate. The pixel size is 170/spl times/170 /spl mu/m/sup 2/ for a total active area of 1.18 cm/sup 2/. The detector is bump-bonded to a VLSI front-end chip which implements a single-photon counting architecture. This feature allows to enhance the radiographic contrast detection with respect to charge integrating devices. The system has been tested by using a standard mammographic tube. Images of mammographic phantoms will be presented and compared with radiographs obtained with traditional film/screen systems. Monte Carlo simulations have been also performed to evaluate the imaging capability of the system. Comparison with simulations and experimental results will be shown.


The Astrophysical Journal | 2010

MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION

H. S. Ahn; P. Allison; M. G. Bagliesi; Loius M. Barbier; J. J. Beatty; G. Bigongiari; T. J. Brandt; J.T. Childers; N. B. Conklin; S. Coutu; Michael A. DuVernois; O. Ganel; J. H. Han; J. A. Jeon; K. C. Kim; Jue-Yeon Lee; M.H. Lee; P. Maestro; A. Malinin; P.S. Marrocchesi; S. Minnick; S. I. Mognet; G. W. Na; J. Nam; S. Nam; S. Nutter; I. H. Park; N. Park; E. S. Seo; R. Sina

We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 ? 0.123stat ? 0.030syst, 0.076 ? 0.019stat ? 0.013syst, 0.115 ? 0.031stat ? 0.004syst, 0.153 ? 0.039stat ? 0.005syst, 0.180 ? 0.045stat ? 0.006syst, and 0.139?? 0.043stat ? 0.005syst, respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 ? 0.013stat ? 0.009syst+0.010esc ?0.017. The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the ~TeV per nucleon region.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

GaAs pixel radiation detector as an autoradiography tool for genetic studies

E. Bertolucci; Maurizio Conti; Giovanni Mettivier; P. Russo; S.R. Amendolia; Maria Giuseppina Bisogni; U. Bottigli; A. Ceccopieri; M. A. Ciocci; Pasquale Delogu; Maria Evelina Fantacci; P. Maestro; V. Marzulli; E. Pernigotti; N Romeo; V. Rosso; A. Stefanini; S. Stumbo

Abstract We present an autoradiography tool to be used mainly for genetic studies. It performs a quantitative analysis of radioactivity and can follow a dynamic process. We designed several applications, in particular one aimed at detecting hybridization of radio-labeled DNA fragments with known DNA-probes deposited on a micro-array. The technique is based on GaAs pixel array detector and low threshold, large dynamic range and good sensitivity integrated electronics developed for medical applications, suitable to detect markers (gamma or beta) such as 14C, 35S, 33P, 32P, 125I, even at very low activities. A Monte Carlo simulation of β− detection in GaAs is presented here in order to study the spatial resolution characteristics of such a system. For several biological applications, the electronics is required to perform at high temperatures (from 37° to 68°): we present here studies of noise and minimum threshold as a function of the temperature.


arXiv: Instrumentation and Methods for Astrophysics | 2013

Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

A. M. Galper; O. Adriani; R.L. Aptekar; I.V. Arkhangelskaja; A.I. Arkhangelskiy; M. Boezio; V. Bonvicini; K. A. Boyarchuk; M. I. Fradkin; Yu. V. Gusakov; V. A. Kaplin; V. A. Kachanov; M. D. Kheymits; A. Leonov; F. Longo; E. P. Mazets; P. Maestro; P.S. Marrocchesi; I. A. Mereminskiy; V. V. Mikhailov; A. A. Moiseev; E. Mocchiutti; N. Mori; I. V. Moskalenko; P. Yu. Naumov; P. Papini; P. Picozza; V. G. Rodin; M. F. Runtso; R. Sparvoli

The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ∼0.01° (Eγ > 100 GeV), the energy resolution ∼1% (Eγ > 10 GeV), and the proton rejection factor ∼106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.


Bulletin of The Russian Academy of Sciences: Physics | 2015

The GAMMA-400 experiment: Status and prospects

N. P. Topchiev; A. M. Galper; V. Bonvicini; O. Adriani; R.L. Aptekar; I.V. Arkhangelskaja; A.I. Arkhangelskiy; L. Bergstrom; E. Berti; G. Bigongiari; S. G. Bobkov; E. A. Bogomolov; M. Boezio; M. Bongi; S. Bonechi; S. Bottai; K. A. Boyarchuk; A. Vacchi; E. Vannuccini; G. Vasilyev; G. Castellini; P. W. Cattaneo; P. Cumani; G. L. Dedenko; V.A. Dogiel; C. De Donato; B.I. Hnatyk; M. S. Gorbunov; Yu. V. Gusakov; N. Zampa

The development of the GAMMA-400 γ-ray telescope continues. The GAMMA-400 is designed to measure fluxes of γ-rays and the electron-positron cosmic-ray component possibly associated with annihilation or decay of dark matter particles; and to search for and study in detail discrete γ-ray sources, to measure the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-rays from the active Sun. The energy range for measuring γ-rays and electrons (positrons) is from 100 MeV to 3000 GeV. For 100-GeV γ-rays, the γ-ray telescope has an angular resolution of ∼0.01°, an energy resolution of ∼1%, and a proton rejection factor of ∼5 × 105. The GAMMA-400 will be installed onboard the Russian Space Observatory.

Collaboration


Dive into the P. Maestro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Adriani

University of Florence

View shared research outputs
Top Co-Authors

Avatar

S. Coutu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. B. Conklin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. I. Mognet

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge