P. Morera
Tuscia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Morera.
Journal of Molecular Endocrinology | 2012
P. Morera; L. Basiricò; Kenji Hosoda; U. Bernabucci
Heat stress (HS) induces adaptive responses that are responsible for alterations of carbohydrate and lipid metabolism. This study aimed to evaluate the effects of chronic heat treatment on the expression and secretion of leptin and adiponectin, important regulators of energy homeostasis, food intake and insulin action. C57BL/6 mice were subdivided into three groups (24 mice each). The first group was kept under control conditions (C: 22±2 °C). The second group was exposed to HS (35±1 °C). The third group was kept under control conditions and was food restricted (FR). The HS group had higher rectal temperature than the C and FR groups and lower food intake than the C group. Hspa1 (Hspa1a) gene expression in adipose tissue, muscle and liver was higher under HS than FR and C. Heat treatment resulted in decreased blood glucose and non-esterified fatty acids; increased leptin, adiponectin and insulin secretion; and greater glucose disposal. Leptin, adiponectin, leptin and adiponectin receptors, insulin receptor substrate-1 and glucose transporter mRNAs were up-regulated in HS mice. This study provides evidence that HS improves leptin and adiponectin signalling in adipose tissue, muscle and liver. Heat stress was responsible for improving insulin sensitivity and glucose uptake in peripheral tissues, probably mediated by adipokines. Changes in the adipokine levels and sensitivity to them may be considered as an adaptive response to heat.
Journal of Molecular Endocrinology | 2008
U. Bernabucci; L. Basiricò; P. Morera; Nicola Lacetera; Bruno Ronchi; A. Nardone
Studies have demonstrated that heat shock is associated with alteration in energy metabolism. In this study, we investigated the effect of heat shock on gene expression and secretion of adiponectin and leptin, and gene expression of Hspa2 and Ppargamma in 3T3-L1 adipocytes. Compared with 37 degrees C, adiponectin mRNA was higher at 39 degrees C, and lower at 41 degrees C. Leptin mRNA was higher when adipocytes were exposed to 41 degrees C compared with 37 and 39 degrees C. Secretion of adiponectin increased at 39 degrees C, and when cells were exposed to 41 degrees C it was not detectable. Leptin secretion increased significantly at 41 degrees C, compared with 37 and 39 degrees C. Hspa2 mRNA was increased at 39 degrees C, and the highest level was reached at 41 degrees C. Ppargamma mRNA exhibited a substantial increase in a temperature-dependent manner. The study provides the first evidence of a possible direct effect of heat shock on adiponectin and leptin gene expression and secretion, and demonstrates that the expression of the two adipokines is differentially regulated at the temperatures tested.
Journal of Dairy Science | 2015
U. Bernabucci; L. Basiricò; P. Morera; D. Dipasquale; Andrea Vitali; F. Piccioli Cappelli; Luigi Calamari
Milk characteristics are affected by heat stress, but very little information is available on changes of milk protein fractions and their relationship with cheesemaking properties of milk. The main objective of the study was to evaluate the effect of hot season on milk protein fractions and cheesemaking properties of milk for Grana Padano cheese production. The study was carried out in a dairy farm with a cheese factory for transforming the milk to Grana Padano cheese. The study was carried out from June 2012 to May 2013. Temperature and relative humidity of the inside barn were recorded daily during the study period using 8 electronic data loggers programmed to record every 30 min. Constant managerial conditions were maintained during the experimental periods. During the experimental period, feed and diet characteristics, milk yield, and milk characteristics were recorded in summer (from June 29 to July 27, 2012), winter (from January 25 to March 8, 2013), and spring (from May 17 to May 31, 2013). Milk yield was recorded and individual milk samples were taken from 25 cows selected in each season during the p.m. milking. Content of fat, proteins, caseins (CN), lactose and somatic cell count (SCC), titratable acidity, and milk rennet coagulation properties were determined on fresh samples. Milk protein fraction concentrations were determined by the sodium dodecyl sulfate-PAGE. Data were tested for nonnormality by the Shapiro-Wilk test. In case of nonnormality, parameters were normalized by log or exponential transformation. The data were analyzed with repeated measures ANOVA using a mixed model procedure. For all the main milk components (fat, protein, total solids, and solids-not-fat), the lowest values were observed in the summer and the greatest values were observed in the winter. Casein fractions, with the exception of γ-CN, showed the lowest values in the summer and the greatest values in the winter. The content of IgG and serum albumin was greater in summer than in the winter and spring. A mild effect of season was observed for milk SCC, with greater values in summer than in the winter and spring. A worsening of milk coagulation properties was observed in summer season. The alteration of cheesemaking properties during hot season seems strictly linked with changes of milk protein fractions mainly with the decrease of αS-CN and β-CN and the increase of undefined proteins.
Veterinary Immunology and Immunopathology | 2009
Nicola Lacetera; U. Bernabucci; L. Basiricò; P. Morera; A. Nardone
This study verified whether leptin or its long isoform receptor (Ob-Rb) genes are expressed in proliferating lymphocytes from bovine species, and whether their expression changes with increased temperatures. Peripheral blood mononuclear cells (PBMC) from five Holstein cows were incubated in the presence of concanavalin A, and alternatively subjected for 65 h to each of the following treatments (T): 39 degrees C continuously (T39) or three 13-h cycles at 40 (T40), 41 (T41) or 42 degrees C (T42), respectively, which were alternated with two 13-h cycles at 39 degrees C. T39 mimicked normothermia; T40, 41 and 42 mimicked conditions of hyperthermia alternated with normothermia. PBMC proliferation declined under T42. Compared with T39, levels of mRNA for leptin was lower under T42, whereas mRNA for Ob-Rb was lower in lymphocytes cultured both under T41 and T42. DNA synthesis was positively correlated with leptin mRNA. This study supports the concept that severe heat stress impairs proliferation of bovine PBMC, confirms that bovine lymphocytes express Ob-Rb gene, and provides the first experimental evidence that bovine lymphocytes express gene for leptin, and that increased temperatures are associated with altered gene expression for leptin and Ob-Rb.
Journal of Dairy Science | 2017
L. Basiricò; P. Morera; D. Dipasquale; A. Tröscher; U. Bernabucci
Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA.
Journal of Dairy Science | 2015
L. Basiricò; P. Morera; D. Dipasquale; A. Tröscher; Andrea Serra; Marcello Mele; U. Bernabucci
Some studies have shown the protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation in animal models, but no information is available about CLA and changes in oxidative status of the bovine mammary gland. The objectives of the study were to assess in vitro the effect of CLA on the cellular antioxidant response of bovine mammary cells, to examine whether CLA isomers could play a role in cell protection against the oxidative stress, and to study the molecular mechanism involved. For the study, BME-UV1 cells, a bovine mammary epithelial cell line, were used as the experimental model. The BME-UV1 cells were treated with complete medium containing 50 µM cis-9,trans-11 CLA (c9,t11 CLA), trans-10,cis-12 CLA (t10,c12 CLA), and CLA mixture (1:1, cis-9,trans-11: trans-10,cis-12 CLA). To monitor cellular uptake of CLA isomers, cells and culture medium were collected at 0, 3, and 48 h from CLA addition for lipid extraction and fatty acid analyses. To assess the cellular antioxidant response, glutathione (GSH/GSSH), NADPH, and γ-glutamyl-cysteine ligase activity was measured after 48 h from addition of CLA. Cytoplasmic superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase activities and mRNA were also determined. Intracellular reactive oxygen species and thiobarbituric acid reactive substance production were assessed in cells supplemented with CLA isomers. Cell viability after 3h to H2O2 exposure was assessed to evaluate and to compare the potential protection of different CLA isomers against H2O2-induced oxidative stress. Mammary cells readily picked up all CLA isomers, their accumulation was time dependent, and main metabolites at 48 h are two 18:3 isomers. The CLA treatment induced an intracellular GSH increase, matched by high concentration of NADPH, and an increase of γ-glutamyl-cysteine ligase activity mainly in cells treated with the t10,c12 CLA isomer. The CLA isomer treatment of bovine mammary cells increased superoxide dismutase, glutathione peroxidase, and glutathione S-transferase activity and decreased glutathione reductase activity, but no changes in gene expression of these antioxidant enzymes were observed. Cells supplemented with CLA isomers showed a reduction in intracellular reactive oxygen species and thiobarbituric acid reactive substance levels. All CLA isomers were able to enhance cell resistance against H2O2-induced oxidative stress. These suggest an antioxidant role of CLA, in particular of t10,c12 CLA, by developing a significantly high redox status in cells.
Journal of Dairy Science | 2015
Khuram Shahzad; Haji Akbar; M. Vailati-Riboni; L. Basiricò; P. Morera; Sandra L. Rodriguez-Zas; A. Nardone; U. Bernabucci; Juan J. Loor
The liver is the main metabolic organ coordinating the adaptations that take place during the peripartal period of dairy cows. A successful transition into lactation, rather than management practices alone, depends on environmental factors such as temperature, season of parturition, and photoperiod. Therefore, we analyzed the effect of calving season on the hepatic transcriptome of dairy cows during the transition period. A total of 12 Holstein dairy cows were assigned into 2 groups based on calving season (6 cows March-April, spring; 6 cows June-July, summer, SU). The RNA was extracted from liver samples obtained at -30, 3, and 35 DIM via percutaneous biopsy and hybridized to the Agilent 44K Bovine (V2) Gene Expression Microarray (Agilent Technologies Inc., Santa Clara, CA). A quantitative PCR on 22 target genes was performed to verify and expand the analyses. A total of 4,307 differentially expressed genes were detected (false discovery rate ≤0.05) in SU compared with spring. Furthermore, 73 unique differentially expressed genes were detected in SU compared with spring cows after applying a fold-change threshold ≥3 and ≤-3. For Kyoto Encyclopedia of Genes and Genomes pathways analysis of differentially expressed genes, we used the dynamic impact approach. Ingenuity Pathway Analysis software was used to analyze upstream transcription regulators and perform gene network analysis. Among metabolic pathways, energy metabolism from lipids, carbohydrates, and amino acids was strongly affected by calving in SU, with a reduced level of fatty acid synthesis, oxidation, re-esterification, and synthesis of lipoproteins, leading to hepatic lipidosis. Glycan-synthesis was downregulated in SU cows probably as a mechanism to counteract the progression of this lipidosis. In contrast, calving in the SU resulted in upregulation of gluconeogenesis but also greater use of glucose as an energy source. Among nonmetabolic pathways, the heat-shock response was obviously activated in SU cows but was also associated with inflammatory and intracellular stress response. Furthermore, data support a recent finding that cows experience endoplasmic reticulum stress around parturition. Transcription regulator analysis revealed how metabolic changes are related to important regulatory mechanisms, including epigenetic modification. The holistic analyses of the liver transcriptome response to calving in the summer at high environmental temperatures underscore how transition cows should be carefully managed during this period, as they experience alterations in liver energy metabolism and inflammatory state increasing susceptibility to health disorders in early postpartum.
Journal of Dairy Science | 2015
L. Basiricò; Elisabetta Catalani; P. Morera; Stefano Cattaneo; Milda Stuknytė; U. Bernabucci; I. De Noni; A. Nardone
The occurrence of 8 bovine casein-derived peptides (VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP, and HLPLP) reported as angiotensin converting enzyme-inhibitors (ACE-I) was investigated in the 3-kDa ultrafiltered water-soluble extract (WSE) of Parmigiano Reggiano (PR) cheese samples by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry via an electrospray ionization source. Only VPP, IPP, LHLPLP, and HLPLP were revealed in the WSE, and their total amount was in the range of 8.46 to 21.55 mg/kg of cheese. Following in vitro static gastrointestinal digestion, the same ACE-I peptides along with the newly formed AYFYPEL and AYFYPE were found in the 3 kDa WSE of PR digestates. Digestates presented high amounts (1,880-3,053 mg/kg) of LHLPLP, whereas the remaining peptides accounted for 69.24 to 82.82 mg/kg. The half-maximal inhibitory concentration (IC50) values decreased from 7.92 ± 2.08 in undigested cheese to 3.20 ± 1.69 after in vitro gastrointestinal digestion. The 3-kDa WSE of digested cheeses were used to study the transport of the 8 ACE-I peptides across the monolayers of the Caco-2 cell culture grown on a semipermeable membrane of the transwells. After 1h of incubation, 649.20 ± 148.85 mg/kg of LHLPLP remained in the apical compartment, whereas VPP, IPP, AYFYPEL, AYFYPE, and HLPLP accounted in total for less than 36.78 mg/kg. On average, 0.6% of LHLPLP initially present in the digestates added to the apical compartment were transported intact to the basolateral chamber after the same incubation time. Higher transport rate (2.9%) was ascertained for the peptide HLPLP. No other intact ACE-I peptides were revealed in the basolateral compartment. For the first time, these results demonstrated that the ACE-I peptides HLPLP and LHLPLP present in the in vitro digestates of PR cheese are partially absorbed through an in vitro model of human intestinal epithelium.
Journal of Animal Science | 2016
P. Morera; L. Basiricò; Bruno Ronchi; U. Bernabucci
Numerous animal feeding studies have investigated the presence of DNA from transgenic plants in tissues from different animal species, but the data reported are sometimes controversial. The aim of this study was to investigate the presence of transgenic DNA (tDNA) in the digesta and tissues of a meat rabbit breed fed genetically modified (GM) soybean meal. Fifteen male New Zealand White rabbits were used for the experimental trial. Ten rabbits (treated group [TG]) were fed a mixed feed containing 10% GM soybean meal and 5 rabbits (control group [CG]) received a mixed feed containing conventional soybean meal, both from weaning (28 d of age) to slaughter (80 ± 3 d). Samples of blood, liver, kidney, heart, stomach, intestine (jejunum), lateral quadricep muscle, longissimus muscle, and perirenal adipose tissue were collected to assess the possible DNA transfer from GM feed to animal tissues. Samples of stomach contents and feces were also taken to study the degradability of ingested tDNA from feed in the digestive tract of rabbit. Moreover, samples of hair were collected to determine the possible environmental contamination from feed powders present on the farm. The DNA extraction was performed using specific genomic DNA kits. All samples were monitored, by using real-time PCR, for oligonucleotide primers and probes specific for the transgenic Roundup Ready soybean 40-3-2 and for the endogenous () gene. As an internal control of rabbit tissues, the presence of the () gene was used. In this study, no fragments of tDNA were detectable in tissue DNA samples of rabbits except in the extracted DNA from stomach digesta, feces, and hair of rabbits fed with GM soybean. Similar results were found for the reference gene, whereas the presence of the gene was detected in all rabbit tissues. The lack of tDNA of soybean in rabbit tissues represents an important result, which demonstrates that meat from rabbits fed a diet containing GM feed is as that derived from rabbits fed conventional crops. The recombinant DNA recovered in the stomach digesta and in feces indicates an incomplete digestion of the soybean DNA in the gastrointestinal tract of the rabbit, whereas the presence of trace soybean transgene in the hair of the TG rabbits is suggestive of an environmental contamination.
Italian Journal of Animal Science | 2009
L. Basiricò; U. Bernabucci; P. Morera; Nicola Lacetera; A. Nardone
Abstract The aim of the study was to investigate the effects of hot season on gene expression and protein secretion of ApoB100 in transition dairy cows. Hot season strongly down-regulated ApoB100 gene and protein expression. This condition and the higher circulating NEFA were responsible for the higher lipid accumulation in liver of heat-stressed transition cows.