P. Moskalik
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Moskalik.
The Astrophysical Journal | 1998
S. J. Kleinman; R. E. Nather; D. E. Winget; J. C. Clemens; P. A. Bradley; A. Kanaan; J. L. Provencal; C. F. Claver; T. K. Watson; K. Yanagida; A. Nitta; J. S. Dixson; Matt A. Wood; A. D. Grauer; B. P. Hine; G. Fontaine; James Liebert; D. J. Sullivan; D. T. Wickramasinghe; N. Achilleos; T. M. K. Marar; S. Seetha; B. N. Ashoka; E. G. Meištas; Elia M. Leibowitz; P. Moskalik; Jurek Krzesinski; J.-E. Solheim; A. Bruvold; D. O'Donoghue
The white dwarfs are promising laboratories for the study of cosmochronology and stellar evolution. Through observations of the pulsating white dwarfs, we can measure their internal structures and compositions, critical to understanding post main sequence evolution, along with their cooling rates, allowing us to calibrate their ages directly. The most important set of white dwarf variables to measure are the oldest of the pulsators, the cool DAVs, which have not previously been explored through asteroseismology due to their complexity and instability. Through a time-series photometry data set spanning ten years, we explore the pulsation spectrum of the cool DAV, G29-38 and find an underlying structure of 19 (not including multiplet components) normal-mode, probably l=1 pulsations amidst an abundance of time variability and linear combination modes. Modelling results are incomplete, but we suggest possible starting directions and discuss probable values for the stellar mass and hydrogen layer size. For the first time, we have made sense out of the complicated power spectra of a large-amplitude DA pulsator. We have shown its seemingly erratic set of observed frequencies can be understood in terms of a recurring set of normal-mode pulsations and their linear combinations. With this result, we have opened the interior secrets of the DAVs to future asteroseismological modelling, thereby joining the rest of the known white dwarf pulsators.
Monthly Notices of the Royal Astronomical Society | 2010
J. M. Benkő; Katrien Kolenberg; R. Szabó; D. W. Kurtz; Steve Bryson; J. Bregman; Martin Still; R. Smolec; J. Nuspl; James M. Nemec; P. Moskalik; G. Kopacki; Z. Kolláth; E. Guggenberger; M. Di Criscienzo; J. Christensen-Dalsgaard; H. Kjeldsen; William J. Borucki; David G. Koch; J. M. Jenkins; J. Van Cleve
We present our analysis of Kepler observations of 29 RR Lyrae stars, based on 138 d of observation. We report precise pulsation periods for all stars. Nine of these stars had incorrect or unknown periods in the literature. 14 of the stars exhibit both amplitude and phase Blazhko modulations, with Blazhko periods ranging from 27.7 to more than 200 d. For V445 Lyr, a longer secondary variation is also observed in addition to its 53.2-d Blazhko period. The unprecedented precision of the Kepler photometry has led to the discovery of the the smallest modulations detected so far. Moreover, additional frequencies beyond the well-known harmonics and Blazhko multiplets have been found. These frequencies are located around the half-integer multiples of the main pulsation frequency for at least three stars. In four stars, these frequencies are close to the first and/or second overtone modes. The amplitudes of these periodicities seem to vary over the Blazhko cycle. V350 Lyr, a non-Blazhko star in our sample, is the first example of a double-mode RR Lyrae star that pulsates in its fundamental and second overtone modes.
Monthly Notices of the Royal Astronomical Society | 2005
D. W. Kurtz; Chris Cameron; M. S. Cunha; N. Dolez; G. Vauclair; E. Pallier; A. Ulla; S. O. Kepler; A. F. M. da Costa; A. Kanaan; L. Fraga; O. Giovannini; Matt A. Wood; N. Silvestri; S. D. Kawaler; R. L. Riddle; M. D. Reed; T. K. Watson; T. S. Metcalfe; Anjum S. Mukadam; R. E. Nather; D. E. Winget; Atsuko Nitta; S. J. Kleinman; Joyce Ann Guzik; P. A. Bradley; Jaymie M. Matthews; K. Sekiguchi; D. J. Sullivan; T. Sullivan
HR 1217 is one of the best-studied rapidly oscillating Ap (roAp) stars, with a frequency spectrum of alternating even- and odd-� modes that are distorted by the presence of a strong, global magnetic field. Several recent theoretical studies have found that within the observable
Monthly Notices of the Royal Astronomical Society | 2012
E. Guggenberger; K. Kolenberg; James M. Nemec; R. Smolec; J. M. Benkő; Chow-Choong Ngeow; Judith G. Cohen; Branimir Sesar; R. Szabó; Marcio Catelan; P. Moskalik; Karen Kinemuchi; Shawn E. Seader; Jeffrey C. Smith; Peter Tenenbaum; Hans Kjeldsen
Rapid and strong changes in the Blazhko modulation of RR Lyrae stars, as have recently been detected in high-precision satellite data, have become a crucial topic in finding an explanation of the long-standing mystery of the Blazhko effect. We present here an analysis of the most extreme case detected so far, the RRab star V445 Lyr (KIC 6186029) which was observed with the Kepler space mission. V445 Lyr shows very strong cycle-to-cycle changes in its Blazhko modulation, which are caused by both a secondary long-term modulation period and irregular variations. In addition to the complex Blazhko modulation, V445 Lyr also shows a rich spectrum of additional peaks in the frequency range between the fundamental pulsation and the first harmonic. Among those peaks, the second radial overtone could be identified, which, combined with a metallicity estimate of [Fe/H] =−2.0 dex from spectroscopy, allowed us to constrain the mass (0.55–0.65 M_⊙) and luminosity (40–50 L_⊙) of V445 Lyr through theoretical Petersen diagrams. A non-radial mode and possibly the first overtone are also excited. Furthermore, V445 Lyr shows signs of the period-doubling phenomenon and a long-term period change. A detailed Fourier analysis along with a study of the O − C variation of V445 Lyr is presented, and the origin of the additional peaks and possible causes of the changes in the Blazhko modulation are discussed. The results are then put into context with those of the only other star with a variable Blazhko effect for which a long enough set of high-precision continuous satellite data has been published so far, the CoRoT star 105288363.
web science | 2004
M. D. Reed; S. D. Kawaler; S. Zola; X. J. Jiang; S. Dreizler; S. Schuh; Jochen L. Deetjen; R. Kalytis; E. G. Meištas; R. Janulis; D. Ališauskas; Jurek Krzesinski; M. Vučković; P. Moskalik; W. Ogloza; A. Baran; G. Stachowski; D. W. Kurtz; J. M. Gonzalez Perez; Anjum S. Mukadam; T. K. Watson; C. Koen; P. A. Bradley; M. S. Cunha; Mukremin Kilic; E. W. Klumpe; R. F. Carlton; G. Handler; D. Kilkenny; R. L. Riddle
Since pulsating subdwarf B (sdBV or EC14026) stars were first discovered, observational efforts have tried to realize their potential for constraining the interior physics of extreme horizontal branch stars. Difficulties encountered along the way include uncertain mode identifications and a lack of stable pulsation mode properties. Here we report on Feige 48, an sdBV star for which follow-up observations have been obtained spanning more than four years. These observations show some stable pulsation modes. We resolve the temporal spectrum into five stable pulsation periods in the range 340–380 s with amplitudes less than 1 per cent, and two additional periods that appear in one data set each. The three largest amplitude periodicities are nearly equally spaced, and we explore the consequences of identifying them as a rotationally split l= 1 triplet by consulting a representative stellar model. The general stability of the pulsation amplitudes and phases allows us to use the pulsation phases to constrain the time-scale of evolution for this sdBV star. Additionally, we are able to place interesting limits on any stellar or planetary companion to Feige 48.
The Astrophysical Journal | 2003
Anjum S. Mukadam; S. O. Kepler; D. E. Winget; R. E. Nather; Mukremin Kilic; Fergal Mullally; T. von Hippel; S. J. Kleinman; Atsuko Nitta; Joyce Ann Guzik; P. A. Bradley; Jaymie M. Matthews; K. Sekiguchi; D. J. Sullivan; T. Sullivan; R. R. Shobbrook; Peter V. Birch; X. J. Jiang; Dong-Ling Xu; S. Joshi; B. N. Ashoka; P. Ibbetson; E. M. Leibowitz; Eran O. Ofek; E. G. Meištas; R. Janulis; D. Ališauskas; R. Kalytis; G. Handler; D. Kilkenny
We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt ≤ (5.5 ± 1.9) × 10-15 s s-1, after correcting for proper motion. Our results are consistent with previous values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is P/ ≥ 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions.
Monthly Notices of the Royal Astronomical Society | 2015
P. Moskalik; Radosław Smolec; K. Kolenberg; L. Molnár; D. W. Kurtz; R. Szabó; J. M. Benkő; James M. Nemec; M. Chadid; Elisabeth Guggenberger; Chow-Choong Ngeow; Young-Beom Jeon; G. Kopacki; Shashi M. Kanbur
We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f2 has an amplitude of a few mmag, 20 45 times lower than the main radial mode with frequency f1. The two oscillations have a period ratio of P2/P1 = 0.612 0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is nonradial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P2/P1 �0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f2 at �1/2f2 and at �3/2f2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f2 and its subharmonics are variable on a timescale of 10 200d. The dominant radial mode also shows variations on the same timescale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1mmag, that must correspond to nonradial g-modes. Such modes never before have been observed in RR Lyrae variables.
web science | 2002
G. Vauclair; P. Moskalik; B. Pfeiffer; M. Chevreton; N. Dolez; B. Serre; S. J. Kleinman; M. A. Barstow; A. E. Sansom; J.-E. Solheim; Juan Antonio Belmonte; Steven D. Kawaler; S. O. Kepler; A. Kanaan; O. Giovannini; D. E. Winget; T. K. Watson; R. E. Nather; J. C. Clemens; J. L. Provencal; J. S. Dixson; K. Yanagida; A. Nitta Kleinman; M. H. Montgomery; E. W. Klumpe; A. Bruvold; M. S. O'Brien; C. J. Hansen; A. D. Grauer; P. A. Bradley
The pulsating PG 1159 planetary nebula central star RXJ 2117+3412 has been observed over three successive seasons of a multisite photometric campaign. The asteroseismological analysis of the data, based on the 37 identified ` = 1 modes among the 48 independent pulsation frequencies detected in the power spectrum, leads to the derivation of the rotational splitting, the period spacing and the mode trapping cycle and amplitude, from which a number of fundamental parameters can be deduced. The average rotation period is 1.16 ± 0.05 days. The trend for the rotational splitting to decrease with increasing periods is incompatible with a solid body rotation. The total mass is 0.56 −0.04 M and the He-rich envelope mass fraction is in the range 0.013–0.078 M∗. The luminosity derived from asteroseismology is log(L/L ) = 4.05 +0.23 −0.32 and the distance 760 +230 −235 pc. At such a distance, the linear size of the planetary nebulae is 2.9 ± 0.9 pc. The role of mass loss on the excitation mechanism and its consequence on the amplitude variations is discussed.
Monthly Notices of the Royal Astronomical Society | 2002
D. W. Kurtz; S. D. Kawaler; R. L. Riddle; M. D. Reed; M. S. Cunha; Matt A. Wood; N. Silvestri; T. K. Watson; N. Dolez; P. Moskalik; S. Zola; E. Pallier; Joyce Ann Guzik; T. S. Metcalfe; Anjum S. Mukadam; R. E. Nather; D. E. Winget; D. J. Sullivan; T. Sullivan; K. Sekiguchi; X. J. Jiang; R. R. Shobbrook; B. N. Ashoka; S. Seetha; S. Joshi; D. O'Donoghue; G. Handler; M. Mueller; J. M. Gonzalez Perez; J.-E. Solheim
ABSTRACT HR1217 is a prototypical rapidly oscillating Ap star that has presented a test tothe theory of nonradial stellar pulsation. Prior observations showed a clear patternof five modes with alternating frequency spacings of 33.3µHz and 34.6µHz, with asixth mode at a problematic spacing of 50.0µHz (which equals 1.5×33.3µHz) to thehigh-frequency side. Asymptotic pulsation theory allowed for a frequency spacing of34µHz, but hipparcos observations rule out such a spacing. Theoretical calculationsof magnetoacoustic modes in Ap stars by Cunha (2001) predicted that there shouldbe a previously undetected mode 34µHz higher than the main group, with a smallerspacing between it and the highest one. In this Letter, we present preliminary resultsfrom a multi-site photometric campaign on the rapidly oscillating Ap star HR1217using the “Whole Earth Telescope”. While a complete analysis of the data will appearin a later paper, one outstanding result from this run is the discovery of a newlydetected frequency in the pulsation spectrum of this star, at the frequency predictedby Cunha (2001).Keywords: Stars: oscillations – stars: variables – stars: individual (HR1217) – stars:magnetic.
The Astrophysical Journal | 1998
M. S. O'Brien; G. Vauclair; S. D. Kawaler; T. K. Watson; D. E. Winget; R. E. Nather; M. H. Montgomery; A. Nitta; S. J. Kleinman; D. J. Sullivan; X. J. Jiang; T. M. K. Marar; S. Seetha; B. N. Ashoka; J. Bhattacharya; Elia M. Leibowitz; S. Hemar; P. Ibbetson; Brian Warner; L. van Zyl; P. Moskalik; S. Zola; G. Pajdosz; Jurek Krzesinski; N. Dolez; M. Chevreton; J.-E. Solheim; T. Thomassen; S. O. Kepler; O. Giovannini
Observation of g-mode pulsations in the variable pre-white dwarf (GW Virginis) stars provides a unique means to probe their interiors and to study the late stages of stellar evolution. Multisite campaigns have in several cases proved highly successful in decoding pre-white dwarf light curves. Three previous attempts to untangle the pulsation spectrum of the coolest GW Virginis star, PG 0122+200, confirmed the existence of multiple g-modes but left the fundamental period spacing and therefore the stars mass and luminosity in doubt. We present an analysis based on new observations of PG 0122+200 obtained during a Whole Earth Telescope (WET) campaign conducted in the fall of 1996. Although our coverage was, because of bad weather, far poorer than in previous WET campaigns, we confirm the previous result that PG 0122+200 rotates once in 1.6 ± 0.1 days. The most likely period spacing supported by the data implies a mass of 0.69±0.03 M☉. Based on the best seismology we can currently do, the cooling of PG 0122+200 is dominated by neutrino losses. This is not true for all pre-white dwarf stars and makes PG 0122+200 the prime candidate for learning useful physics. Constraints placed on the cooling rate of PG 0122+200 by future measurement of dΠ/dt could provide a unique test of the standard theory of lepton interactions in the (experimentally unexplored) region of phase-space appropriate to pre-white dwarf interiors.