Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P.P. De Deyn is active.

Publication


Featured researches published by P.P. De Deyn.


Neurology | 1999

Improved discrimination of AD patients using β-amyloid(1-42) and tau levels in CSF

Frank Hulstaert; Kaj Blennow; Adrian Ivanoiu; Hc Schoonderwaldt; M. Riemenschneider; P.P. De Deyn; C Bancher; Patrick Cras; Jens Wiltfang; Pankaj D. Mehta; K Iqbal; Hans Pottel; Eugeen Vanmechelen; Hugo Vanderstichele

Objective: To evaluate CSF levels of β-amyloid(1-42) (Aβ42) alone and in combination with CSF tau for distinguishing AD from other conditions. Methods: At 10 centers in Europe and the United States, 150 CSF samples from AD patients were analyzed and compared with 100 CSF samples from healthy volunteers or patients with disorders not associated with pathologic conditions of the brain (CON), 84 patients with other neurologic disorders (ND), and 79 patients with non-Alzheimer types of dementia (NAD). Sandwich ELISA techniques were used on site for measuring Aβ42 and tau. Results: Median levels of Aβ42 in CSF were significantly lower in AD (487 pg/mL) than in CON (849 pg/mL; p = 0.001), ND (643 pg/mL; p = 0.001), and NAD (603 pg/mL; p = 0.001). Discrimination of AD from CON and ND was significantly improved by the combined assessment of Aβ42 and tau. At 85% sensitivity, specificity of the combined test was 86% (95% CI: 81% to 91%) compared with 55% (95% CI: 47% to 62%) for Aβ42 alone and 65% (95% CI: 58% to 72%) for tau. The combined test at 85% sensitivity was 58% (95% CI: 47% to 69%) specific for NAD. The APOE e4 gene load was negatively correlated with Aβ42 levels not only in AD but also in NAD. Conclusions: The combined measure of CSF Aβ42 and tau meets the requirements for clinical use in discriminating AD from normal aging and specific neurologic disorders.


Journal of Neurology, Neurosurgery, and Psychiatry | 2007

Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: frequency, profile and associated care giver stress

Dag Aarsland; Kolbjørn Brønnick; Uwe Ehrt; P.P. De Deyn; Sibel Tekin; Murat Emre; Jeffrey L. Cummings

Objective: To explore the profile of neuropsychiatric symptoms in patients with dementia associated with Parkinson’s disease (PDD). Methods: 537 patients with PDD drawn from an international multicentre clinical trial of rivastigmine were assessed using the 10-item Neuropsychiatric Inventory (NPI). A cluster analysis was used to investigate the inter-relationship of NPI items. Associations between the clusters and demographic and clinical variables were analysed. Results: 89% of the patients presented at least one symptom on the NPI, 77% had two or more symptoms and 64% had at least one symptom with a score ⩾4. The most common symptoms were depression (58%), apathy (54%), anxiety (49%) and hallucinations (44%). Patients with more severe dementia and advanced Parkinson’s disease had more neuropsychiatric symptoms. Nearly 60% of the care givers reported at least one NPI symptom to be of at least moderate severe distress. Five NPI clusters were identified: one group with few and mild symptoms (52%); a mood cluster (11%, high scores on depression, anxiety and apathy); apathy (24%; high apathy and low scores on other items); agitation (5%, high score on agitation and high total NPI score); and a psychosis cluster (8%; high scores on delusions and hallucinations). The psychosis and agitation clusters had the lowest Mini-Mental State Examination score and the highest Unified Parkinson’s Disease Rating Scale and care giver distress scores. Conclusion: Neuropsychiatric symptoms are common in patients with PDD. The profile of these symptoms differs from that in other types of dementia. Subgroups with different neuropsychiatric profiles were identified. These subgroups may be associated with distinct neurobiological changes, which should be explored in future studies.


Clinical Neurology and Neurosurgery | 2009

The complexity of neurobiological processes in acute ischemic stroke

Raf Brouns; P.P. De Deyn

There is an urgent need for improved diagnostics and therapeutics for acute ischemic stroke. This is the focus of numerous research projects involving in vitro studies, animal models and clinical trials, all of which are based on current knowledge of disease mechanisms underlying acute focal cerebral ischemia. Insight in the chain of events occurring during acute ischemic injury is essential for understanding current and future diagnostic and therapeutic approaches. In this review, we summarize the actual knowledge on the pathophysiology of acute ischemic stroke. We focus on the ischemic cascade, which is a complex series of neurochemical processes that are unleashed by transient or permanent focal cerebral ischemia and involves cellular bioenergetic failure, excitotoxicity, oxidative stress, blood-brain barrier dysfunction, microvascular injury, hemostatic activation, post-ischemic inflammation and finally cell death of neurons, glial and endothelial cells.


Clinical Neurology and Neurosurgery | 2004

Neurological complications in renal failure: a review

Raf Brouns; P.P. De Deyn

Neurological complications whether due to the uremic state or its treatment, contribute largely to the morbidity and mortality in patients with renal failure. Despite continuous therapeutic advances, many neurological complications of uremia, like uremic encephalopathy, atherosclerosis, neuropathy and myopathy fail to fully respond to dialysis. Moreover, dialytic therapy or kidney transplantation may even induce neurological complications. Dialysis can directly or indirectly be associated with dialysis dementia, dysequilibrium syndrome, aggravation of atherosclerosis, cerebrovascular accidents due to ultrafiltration-related arterial hypotension, hypertensive encephalopathy, Wernickes encephalopathy, hemorrhagic stroke, subdural hematoma, osmotic myelinolysis, opportunistic infections, intracranial hypertension and mononeuropathy. Renal transplantation itself can give rise to acute femoral neuropathy, rejection encephalopathy and neuropathy in graft versus host disease. The use of immunosuppressive drugs after renal transplantation can cause encephalopathy, movement disorders, opportunistic infections, neoplasms, myopathy and progression of atherosclerosis. We address the clinical, pathophysiological and therapeutical aspects of both central and peripheral nervous system complications in uremia.


Neuroscience | 1997

Mildly impaired water maze performance in male Fmr1 knockout mice

Rudi D'Hooge; Guy Nagels; F. Franck; Cathy E. Bakker; Edwin Reyniers; Katrien Storm; R.F. Kooy; Ben A. Oostra; P.J. Willems; P.P. De Deyn

Fmr1 knockout mice constitute a putative model of fragile X syndrome, the most common form of heritable mental disability in humans. We have compared the performance of transgenic mice with an Fmr1 knockout with that of normal littermates in hidden- and visible-platform water maze learning, and showed that knockouts exhibit subnormal spatial learning abilities and marginal motor performance deficits. During 12 training trials of the hidden-platform task, escape latency and path length decreased significantly in knockouts and control littermates, and no effect of genotype was found. During four ensuing reversal trials, however, significant differences were found between knockouts and control littermates both in escape latency and path length. During the visible-platform condition, the reversal trials also revealed a difference between knockouts and normal littermates in escape latency, but not in path length. Possibly due to marginal motor incapacity, knockouts swam significantly slower than controls during these latter trials. During both probe trials of the hidden-platform task, knockouts as well as normal littermates spent more time in the target quadrant than in the other quadrants, and percent of time spent in the target quadrant was the same in both groups; swimming velocity was not significantly different between knockouts and normal littermates during these trials. Entries in the target area during the probe trials did show a significant effect of genotype on number of entries. The present results largely confirm and extend our previous findings. Impaired spatial abilities in Fmr1 knockouts might have been due to relatively low response flexibility or high memory interference in Fmr1 knockouts. It remains unclear, however, which brain region or neurochemical system might be involved in these disabilities. We conclude that Fmr1 knockout mice might be a valid model of fragile X mental retardation.


American Journal of Medical Genetics | 1996

Long-term potentiation in the hippocampus of fragile X knockout mice.

Jean-Marie Godfraind; Edwin Reyniers; K. De Boulle; Rudi D'Hooge; P.P. De Deyn; Cathy E. Bakker; Ben A. Oostra; R.F. Kooy; P.J. Willems

To gain more insight in the physiological function of the fragile X gene (FMR1) and the mechanisms leading to fragile X syndrome, the Fmr1 gene has been inactivated in mice by gene targeting techniques. In the Morris water maze test, the Fmr1 knockout mice learn to find the hidden platform nearly as well as the control animals, but show impaired performance after the position of the platform has been modified. As malperformance in the Morris water maze test has been associated with impaired long-term potentiation (LTP), electrophysiological studies were performed in hippocampal slices of Fmr1 knockout mice to check for the presence of LTP. Judged by field extracellular excitatory postsynaptic potential recordings in the CA1 hippocampal area, Fmr1 knockout mice express LTP to a similar extent as their wild type littermates during the first 1-2 hr after high frequency stimulation. Also, short-term potentiation (STP) was similar in both types of mice. To investigate whether Fmr1 is involved in the latter stages of LTP as an immediate early gene, we compared Fmr1 mRNA quantities on northern blots after chemical induction of seizures. A transient increase in the transcription of immediate early genes is thought to be essential for the maintenance of LTP. As no increase in Fmr1 mRNA could be detected, neither in cortex nor in total brain, during the first 2 1/2 hr after pentylenetetrazol-induced seizures, it is unlikely that Fmr1 is an immediate early gene in mice. In conclusion, we found no evidence for a function of FMR1 in STP or LTP.


Annals of Clinical Biochemistry | 2009

A worldwide multicentre comparison of assays for cerebrospinal fluid biomarkers in Alzheimer's disease

Nicolaas A. Verwey; W.M. van der Flier; Kaj Blennow; Christopher M. Clark; Sophie Sokolow; P.P. De Deyn; Douglas Galasko; Harald Hampel; Tobias Hartmann; Elisabeth Kapaki; Lars Lannfelt; Pankaj D. Mehta; Lucilla Parnetti; Axel Petzold; Tuula Pirttilä; L Saleh; Anders Skinningsrud; J C Swieten; Marcel M. Verbeek; Jens Wiltfang; Samuel Younkin; P. Scheltens; Marinus A. Blankenstein

Background Different cerebrospinal fluid (CSF) amyloid-beta 1–42 (Aβ 1–42), total Tau (Tau) and Tau phosphorylated at threonine 181 (P-Tau) levels are reported, but currently there is a lack of quality control programmes. The aim of this study was to compare the measurements of these CSF biomarkers, between and within centres. Methods Three CSF-pool samples were distributed to 13 laboratories in 2004 and the same samples were again distributed to 18 laboratories in 2008. In 2004 six laboratories measured Aβ 1–42, Tau and P-Tau and seven laboratories measured one or two of these marker(s) by enzyme-linked immunosorbent assays (ELISAs). In 2008, 12 laboratories measured all three markers, three laboratories measured one or two marker(s) by ELISAs and three laboratories measured the markers by Luminex. Results In 2004, the ELISA intercentre coefficients of variance (interCV) were 31%, 21% and 13% for Aβ 1–42, Tau and P-Tau, respectively. These were 37%, 16% and 15%, respectively, in 2008. When we restricted the analysis to the Innotest® (N = 13) for Aβ 1–42, lower interCV were calculated (22%). The centres that participated in both years (N = 9) showed interCVs of 21%, 15% and 9% and intra-centre coefficients (intraCV) of variance of 25%,18% and 7% in 2008. Conclusions The highest variability was found for Aβ 1–42. The variabilities for Tau and P-Tau were lower in both years. The centres that participated in both years showed a high intraCV comparable to their interCV, indicating that there is not only a high variation between but also within centres. Besides a uniform standardization of (pre)analytical procedures, the same assay should be used to decrease the inter/intracentre variation.


Neurology | 2010

Genetic contribution of FUS to frontotemporal lobar degeneration

T Van Langenhove; J. van der Zee; K Sleegers; S. Engelborghs; Rik Vandenberghe; Ilse Gijselinck; M Van den Broeck; Maria Mattheijssens; Kristien Peeters; P.P. De Deyn; Marc Cruts; C. Van Broeckhoven

Background: Recently, the FUS gene was identified as a new causal gene for amyotrophic lateral sclerosis (ALS) in ∼4% of patients with familial ALS. Since ALS and frontotemporal lobar degeneration (FTLD) are part of a clinical, pathologic, and genetic disease spectrum, we investigated a potential role of FUS in FTLD. Methods: We performed mutational analysis of FUS in 122 patients with FTLD and 15 patients with FTLD-ALS, as well as in 47 patients with ALS. Mutation screening was performed by sequencing of PCR amplicons of the 15 FUS exons. Results: We identified 1 patient with FTLD with a novel missense mutation, M254V, that was absent in 638 control individuals. In silico analysis predicted this amino acid substitution to be pathogenic. The patient did not have a proven family history of neurodegenerative brain disease. Further, we observed the known R521H mutation in 1 patient with ALS. No FUS mutations were detected in the patients with FTLD-ALS. While insertions/deletions of 2 glycines (G) were suggested to be pathogenic in the initial FUS reports, we observed an identical GG-deletion in 2 healthy individuals and similar G-insertions/deletions in 4 other control individuals, suggesting that G-insertions/deletions within this G-rich region may be tolerated. Conclusions: In a first analysis of FUS in patients with frontotemporal lobar degeneration (FTLD), we identified a novel FUS missense mutation, M254V, in 1 patient with pure FTLD. At this point, the biologic relevance of this mutation remains elusive. Screening of additional FTLD patient cohorts will be needed to further elucidate the contribution of FUS mutations to FTLD pathogenesis.


Molecular Psychiatry | 2013

Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology

Julien Chapuis; Franck Hansmannel; Marc Gistelinck; Anais Mounier; C Van Cauwenberghe; Kristof Van Kolen; F Geller; Y Sottejeau; D Harold; Pierre Dourlen; Benjamin Grenier-Boley; Yoichiro Kamatani; B Delepine; F Demiautte; Diana Zelenika; Nadège Zommer; Malika Hamdane; Céline Bellenguez; J.-F. Dartigues; J-J Hauw; F Letronne; A-M Ayral; K Sleegers; A Schellens; Lies Vanden Broeck; S. Engelborghs; P.P. De Deyn; Rik Vandenberghe; Michael Conlon O'Donovan; Michael John Owen

Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer’s disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14–1.26) (P=3.8 × 10−11)). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.


Neurology | 2008

Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease

Nicolas Brouwers; K Sleegers; S. Engelborghs; Sebastian Maurer-Stroh; Ilse Gijselinck; J. van der Zee; Barbara A. Pickut; M Van den Broeck; Maria Mattheijssens; Kristien Peeters; Joost Schymkowitz; Frederic Rousseau; J. J. Martin; Marc Cruts; P.P. De Deyn; C. Van Broeckhoven

Objective: Loss-of-function mutations in the progranulin gene (PGRN) were identified in frontotemporal lobar degeneration (FTLD) with ubiquitin-immunoreactive neuronal inclusions (FTLD-U). We assessed whether PGRN also contributes to genetic risk for Alzheimer disease (AD) in an extended Belgian AD patient group (n = 779, onset age 74.7 ± 8.7 years). Methods: A mutation analysis of the PGRN coding region was performed. The effect of missense mutations was assessed using in silico predictions and protein modeling. Risk effects of common genetic variants were estimated by logistic regression analysis and gene-based haplotype association analysis. Results: We observed seven missense mutations in eight patients (1.3%). Convincing pathogenic evidence was obtained for two missense mutations, p.Cys139Arg and p.Pro451Leu, affecting PGRN protein folding and leading to loss of PGRN by degradation of the misfolded protein. In addition, we showed that PGRN haplotypes were associated with increased risk for AD. Conclusions: Our data support a role for PGRN in patients with clinically diagnosed Alzheimer disease (AD). Further, we hypothesize that at least some PGRN missense mutations might lead to loss of functional protein. Whether the underlying pathology in our cases proves to be AD, frontotemporal lobar degeneration, or a combination of the two must await further investigations.

Collaboration


Dive into the P.P. De Deyn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Marescau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Manil

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Raf Brouns

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

F. Colin

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge