Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Pawłowski is active.

Publication


Featured researches published by P. Pawłowski.


Acta Physiologiae Plantarum | 2001

Electrofusion of protoplasts from Solanum tuberosum, S. nigrum and S. bulbocastanum

Anna Szczerbakowa; Urszula Maciejewska; P. Pawłowski; Bernard Wielgat

Leaf protoplasts of two wild species, Solanum nigrum var. gigantea (S. ngr gig) and S. bulbocastanum Dun. (S. blb), were electrofused with leaf protoplasts of two diploid potato clones, H-8105 and ZEL-1136, respectively, in order to confer the late blight-resistance from the wild species to the cultivated potato. The S. ngr gig mesophyll (+) H-8105 mesophyll combination resulted in regenerants of mostly normal ngr phenotype. Two regenerants from this combination were proved to be true hybrids by RAPD analysis but they rooted poorely in vitro and did not survive the transfer to soil. The S. ngr gig (+) H-8105 fusion combination was also performed with H-8105 cell suspension derived protoplasts enabling an easy identification of interspecific fusants on basis of their intermediate morphology. From the S. ngr gig mesophyll (+) H-8105 cultured cell combination, many abnormal shoots were regenerated. The two lines which survived had normal ngr phenotype but the presence of tuberosum (tbr) genome in those regenerants was not confirmed by RAPD analysis. No plants with tbr phenotype were obtained from both of S. ngr gig (+) H-8105 combinations. On the contrary, when S. blb mesophyll protoplasts were electrofused with ZEL-1136 mesophyll protoplasts, all regenerated plants had tbr phenotype, indicating much lower morphogenetic potential of S. bulbocastanum in comparison with that of S. nigrum var. gigantea. However, the hybridity of those regenerants has not been confirmed by RAPD analysis with two different primers. The efficiency of the applied fusion procedure and analysis of the regenerants is discussed.


Physical Review C | 2016

Results of the ASY-EOS experiment at GSI : the symmetry energy at suprasaturation density

P. Russotto; S. Gannon; S. Kupny; P. Lasko; L. Acosta; M. Adamczyk; A. Al-Ajlan; M. Al-Garawi; S. Al-Homaidhi; F. Amorini; L. Auditore; T. Aumann; Y. Ayyad; Z. Basrak; J. Benlliure; M. Boisjoli; K. Boretzky; J. Brzychczyk; A. Budzanowski; C. Caesar; G. Cardella; P. Cammarata; Z. Chajecki; M. Chartier; A. Chbihi; M. Colonna; M.D. Cozma; B. Czech; E. De Filippo; M. Di Toro

Directed and elliptic flows of neutrons and light charged particles were measured for the reaction 197Au+197Au at 400 MeV/nucleon incident energy within the ASY-EOS experimental campaign at the GSI laboratory. The detection system consisted of the Large Area Neutron Detector LAND, combined with parts of the CHIMERA multidetector, of the ALADIN Time-of-flight Wall, and of the Washington-University Microball detector. The latter three arrays were used for the event characterization and reaction-plane reconstruction. In addition, an array of triple telescopes, KRATTA, was used for complementary measurements of the isotopic composition and flows of light charged particles. From the comparison of the elliptic flow ratio of neutrons with respect to charged particles with UrQMD predictions, a value \gamma = 0.72 \pm 0.19 is obtained for the power-law coefficient describing the density dependence of the potential part in the parametrization of the symmetry energy. It represents a new and more stringent constraint for the regime of supra-saturation density and confirms, with a considerably smaller uncertainty, the moderately soft to linear density dependence deduced from the earlier FOPI-LAND data. The densities probed are shown to reach beyond twice saturation.


Biophysical Journal | 1993

Bioelectrorheological model of the cell. 5. Electrodestruction of cellular membrane in alternating electric field

P. Pawłowski; Irena Szutowicz; Piotr E. Marszalek; Magdalena Fikus

Recently proposed analysis of the extensil stress developed in a cellular membrane subjected to an alternating electric field (Pawłowski, P., and M. Fikus, 1993. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of the membrane in an alternating field. Biophys. J. 65:535-540) was applied in calculations of extensil stress threshold values, sigma eo[d], producing experimentally observed electrodestruction of cells within the frequency range of 7 x 10(1) - 3 x 10(5) Hz. It was shown that the susceptibility (s[d] = 1/sigma eo[d]), of the membrane to this process varies with field frequency and depends on the type of cells. Electrodestruction is facilitated in the 10(5)-Hz field. A rheological hypothesis explaining the experimentally observed dependence of membrane stability on electric field frequency was proposed and successfully tested for two other phenomena: electroporation and electrofusion.


Solid State Phenomena | 2009

Smart Technologies for Adaptive Impact Absorption

Jan Holnicki-Szulc; Cezary Graczykowski; Grzegorz Mikułowski; Arkadiusz Mróz; P. Pawłowski

The article presents a review of recent research carried out in the Department of Intelligent Technologies of Institute of Fundamental Technological Research, dedicated to application of systems for adaptive impact absorption to adaptive aircraft landing gears, novel concept of protective MFM structures, flow-control based airbags, maritime applications of inflatable structures, and development of adaptive wind turbine blade – hub connections.


Biophysical Journal | 1992

Bioelectrorheological model of the cell. 3. Viscoelastic shear deformation of the membrane

J. Poznański; P. Pawłowski; Magdalena Fikus

An analytical electromechanical model of a spherical cell exposed to an alternating electric field was used to calculate shear stress generated in the cellular membrane. Shape deformation of Neurospora crassa (slime) spheroplasts was measured. Statistical analysis permitted empirical evaluation of creep of the cellular membrane within the range of infinitesimal stress. Final results were discussed in terms of various rheological models.


Journal of Theoretical Biology | 1989

Bioelectrorheological model of the cell. 1. Analysis of stresses and deformations.

P. Pawłowski; Magdalena Fikus

An electrorheological model of a cell in alternating electric field is proposed. The model relates changes in the spherical cells shape to the field conditions, electric parameters of cytoplasm, cell membrane and external medium, and to the rheological parameters of the membrane. Stresses were determined using Maxwells stress tensor for isotropic media. Shear stresses in the cell membrane were analyzed. Predictions of the model for variations of shear stress in cellular membranes subjected to an external periodic electric field are presented and related to the conditions prevailing in electrobiological research.


Advances in Science and Technology | 2008

Adaptive Impact Absorption and Applications to Landing Devices

Jan Holnicki-Szulc; P. Pawłowski; M. Mikułowski; Cezary Graczykowski

This paper demonstrates progress in Adaptive Impact Absorption (AIA) research field obtained recently in our research group and is based on previously published conference communicates. The monograph (Ref.[1]), under preparation, will present soon more detailed discussion of the considered problems. In contrast to the standard passive systems the proposed AIA approach focuses on active adaptation of energy absorbing structures (equipped with sensor system detecting and identifying impact in real time and controllable semi-active dissipaters, so called structural fuses) with high ability of adaptation to extreme overloading. A semi-active or fully-active solutions can be applied, which depend on constant or time-dependent modifications realized via controllable dissipative devices. Feasible, adaptive dissipative devices under considerations can be based on MR fluids or (hydraulic or pneumatic) piezo-valves. The presentation will be devoted to the following applications of AIA concept: Adaptive Landing Gears (ALG) for mitigation of exploitative aircraft loads and adaptive flow control based airbags for emergency landing of the helicopter.


The International Journal of Multiphysics | 2015

Perforation of aluminum plates by fragment simulating projectiles (FSP)

T. Fras; L. Colard; P. Pawłowski

The paper describes the ballistic impact test, in which fragment simulating projectiles (FSPs) of a 20-mm-diameter have been used against 40-mmthick plates made of an aluminum alloy AA7020-T651. To perforate plates, the projectiles must have reached a velocity higher than 890 m/s. Based on the performed ballistic test, the plugging failure mode is numerically modeled using the LS-DYNA software package. Results obtained due to the calculations in the Finite Element Method (FEM) are compared with the results from the Smoothed Particle Hydrodynamics (SPH). A condition of geometrical similarity between the target deformed experimentally and its numerical representation is introduced to evaluate the performed simulations.


International Journal of Protective Structures | 2015

Adaptive Impact Absorption – The Concept and Potential Applications:

Jan Holnicki-Szulc; Cezary Graczykowski; Grzegorz Mikułowski; Arkadiusz Mróz; P. Pawłowski; Rafał Wiszowaty

Adaptive Impact Absorption focuses on adaptation of energy absorbing structures to actual dynamic loading by using system of sensors detecting and identifying impact in advance and embedded semi-active dissipaters with controllable mechanical properties. Application of such devices allows to modify dynamic characteristics of the structure during the period of impact and to precisely control the process of energy dissipation. The paper presents an overview of research conducted at the Department of Intelligent Technologies of the Institute of Fundamental Technological Research dedicated to design and applications of various systems of Adaptive Impact Absorption. Wide range of presented examples covers adaptive hydraulic and pneumatic landing gears, skeletal systems equipped with controllable elements and detachable joints as well as adaptive inflatable structures.


BMC Genomics | 2013

A kinetic model of the evolution of a protein interaction network

P. Pawłowski; Szymon Kaczanowski; Piotr Zielenkiewicz

BackgroundKnown protein interaction networks have very particular properties. Old proteins tend to have more interactions than new ones. One of the best statistical representatives of this property is the node degree distribution (distribution of proteins having a given number of interactions). It has previously been shown that this distribution is very close to the sum of two distinct exponential components. In this paper, we asked: What are the possible mechanisms of evolution for such types of networks? To answer this question, we tested a kinetic model for simplified evolution of a protein interactome. Our proposed model considers the emergence of new genes and interactions and the loss of old ones. We assumed that there are generally two coexisting classes of proteins. Proteins constituting the first class are essential only for ecological adaptations and are easily lost when ecological conditions change. Proteins of the second class are essential for basic life processes and, hence, are always effectively protected against deletion. All proteins can transit between the above classes in both directions. We also assumed that the phenomenon of gene duplication is always related to ecological adaptation and that a new copy of a duplicated gene is not essential. According to this model, all proteins gain new interactions with a rate that preferentially increases with the number of interactions (the rich get richer). Proteins can also gain interactions because of duplication. Proteins lose their interactions both with and without the loss of partner genes.ResultsThe proposed model reproduces the main properties of protein-protein interaction networks very well. The connectivity of the oldest part of the interaction network is densest, and the node degree distribution follows the sum of two shifted power-law functions, which is a theoretical generalization of the previous finding. The above distribution covers the wide range of values of node degrees very well, much better than a power law or generalized power law supplemented with an exponential cut-off. The presented model also relates the total number of interactome links to the total number of interacting proteins. The theoretical results were for the interactomes of A. thaliana, B. taurus, C. elegans, D. melanogaster, E. coli, H. pylori, H. sapiens, M. musculus, R. norvegicus and S. cerevisiae.ConclusionsUsing these approaches, the kinetic parameters could be estimated. Finally, the model revealed the evolutionary kinetics of proteome formation, the phenomenon of protein differentiation and the process of gaining new interactions.

Collaboration


Dive into the P. Pawłowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Łukasik

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Adamczyk

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Chartier

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Magdalena Fikus

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. De Filippo

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge