Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. S. Baenziger is active.

Publication


Featured researches published by P. S. Baenziger.


Theoretical and Applied Genetics | 2004

Transferability of SSR markers among wheat, rye, and triticale

C. Kuleung; P. S. Baenziger; I. Dweikat

Abstract Simple sequence repeat (SSR) markers are a valuable tool for many purposes, such as mapping, fingerprinting, and breeding. However, they are only available in some economically important crops because of the high cost and labor intensity involved in their development. Comparative mapping reveals a high degree of colinearity between closely related species, which allows the exchange of markers between them. Our objective was to examine the transferability of SSR markers among wheat (Triticum aestivum L.), rye (Secale cereale L.), and triticale (X Triticosecale Wittmack). One hundred forty-eight wheat and 28 rye SSR markers were used to amplify genomic DNA extracted from five lines each of wheat, rye, and triticale. Transferability of wheat SSR markers to rye was 17%, whereas 25% of rye markers were amplifiable in wheat. In triticale, 58% and 39% transferability was achieved for wheat and rye markers, respectively. Wheat markers gave an average of 2.6, 2.7, and 2.4 polymorphic bands in wheat, rye, and triticale, respectively, while rye markers gave an average of 2.0 in rye and none in wheat and triticale. These transferable markers can now be exploited for further genetic and breeding studies in these species.


Euphytica | 2005

Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars

H. Fufa; P. S. Baenziger; B. S. Beecher; I. Dweikat; Robert A. Graybosch; Kent M. Eskridge

Genetic diversity is the basis for successful crop improvement and can be estimated by different methods. The objectives of this study were to estimate the genetic diversity of 30 ancestral to modern hard red winter wheat (Triticum aestivum L.) cultivars adapted to the Northern Great Plains using pedigree information, morphological traits (agronomic measurements from six environments), end-use quality traits (micro-quality assays on 50 g grain or milled flour samples for the six environments), and molecular markers (seed storage proteins separated using SDS-PAGE, 51 SSRs, and 23 SRAP DNA markers), and to determine the relationships of genetic distance estimates obtained from these methods. Relationships among diversity estimates were determined using simple (Pearson) and rank (Spearman) correlation coefficients between distance estimates and by clustering cultivars using genetic-distances for different traits. All methods found a wide range in genetic diversity. The genetic distance estimates based on pedigree had the highest values due to possible over-estimation arising from model assumptions. The genetic diversity estimates based on seed storage protein were lowest because they were the major determinants of end-use quality, which is a highly selected trait. In general, the diversity estimates from each of the methods were positively correlated at a low level with the exceptions of SRAP diversity estimates being independent of morphologic traits (simple correlation), SDS-PAGE, and SSR diversity estimates (rank correlation). However, SSR markers, thought to be among the most efficient markers for estimating genetic diversity, were most highly correlated with seed storage proteins. The procedures used to accurately estimate genetic diversity will depend largely upon the tools available to the researcher and their application to the breeding scheme.


Molecular Breeding | 2008

Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers

M. L. Ali; J. F. Rajewski; P. S. Baenziger; Kulvinder S. Gill; Kent M. Eskridge; I. Dweikat

Sweet sorghum (Sorghum bicolor L.) is a type of cultivated sorghums and has been recognized widely as potential alternative source of bio-fuel because of its high fermentable sugar content in the stalk. A substantial variation of sugar content and related traits is known to exist in US sweet sorghum. The objectives of the study were to assess the genetic diversity and relationship among the US sweet sorghum cultivars and lines using SSR markers and to examine the genetic variability within sweet sorghum accessions for sugar content. Sixty-eight sweet sorghum and four grain sorghum cultivars and lines were genotyped with 41 SSR markers that generated 132 alleles with an average of 3.22 alleles per locus. Polymorphism information content (PIC) value, a measure of gene diversity, was 0.40 with a range of 0.03–0.87. The genetic similarity co-efficient was estimated based on the segregation of the 132 SSR alleles. Clustering analysis based on the genetic similarity (GS) grouped the 72 sorghum accessions into 10 distinct clusters. Grouping based on clustering analysis was in good agreement with available pedigree and genetic background information. The study has revealed the genetic relationship of cultivars with unknown parentage to those with known parentage. A number of diverse pairs of sweet sorghum accessions were identified which were polymorphic at many SSR loci and significantly different for sugar content as well. Information generated from this study can be used to select parents for hybrid development to maximize the sugar content and total biomass, and development of segregating populations to map genes controlling sugar content in sweet sorghum.


Euphytica | 1998

Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains

C.J. Peterson; Robert A. Graybosch; D.R. Shelton; P. S. Baenziger

Inconsistency of wheat end-use quality has long been a problem for the milling and baking industries, which require high levels of uniformity for modern, high speed, processing. Extensive research was conducted to characterise genetic, environmental, and biochemical factors that contribute to variation in wheat quality. Samples from 17 locations of trials with 30 cultivars grown over two years were evaluated for grain quality, milling yield, mixograph parameters and baking properties. Protein quality and composition of flour samples were determined by SDS sedimentation and size-exclusion chromatography. Test sites were monitored for soil fertility, and meteorological data was collected hourly during grain fill. Additional grain samples and data were collected from six cultivars grown at 11 locations in 1993. Significant variation in end-use quality was observed among samples; variation was attributed to environmental effects, genotype, and their interactions. For many mixograph and baking parameters, variation attributed to environmental effects was of greater magnitude than for genotype. Increasing levels of low molecular weight (LMW) saline soluble proteins were related to a general decline in dough mixing properties and loaf characteristics. However, correlations of protein components with baking parameters were generally low, suggesting limited predictive value. Hours of high temperature stress (>32 °C) during grain fill were associated with loaf volume and SDS sedimentation volume, although in a curvilinear fashion. Increasing temperature stress initially had a positive influence on loaf volume and protein quality; however, when temperature stress exceeded 90 hours, there was a strong negative influence on baking quality. Variation among cultivars for environmental stability was indicated and cultivar responses to temperature stress varied. Relationships with meteorological data suggest opportunities to predict wheat end-use quality through environmental modelling.


Journal of Cereal Science | 1995

Environmental modification of hard red winter wheat flour protein composition

Robert A. Graybosch; C.J. Peterson; P. S. Baenziger; D.R. Shelton

The intrinsic processing quality of wheat (Triticum aestivum L.) cultivars is modified significandy by cultural conditions and climate. In an attempt to understand the biochemical basis of such variation, environmental modification of flour protein content and composition was measured. Thirty hard red winter wheat cultivars and experimental lines were grown at 17 Nebraska environments during 1990 and 1991. Environmental conditions, including grain filling duration, temperature and relative humidity during grain filling, were monitored. Grain yield and test weight also were determined as environmental indicators. Significant linear correlations between flour protein content, as measured by near-infrared spectroscopy, were observed only with the duration of grain filling. Protein quality, as measured by SDS sedimentation volumes and size-exclusion high-performance liquid chromatography, was highly influenced by the frequency of high temperatures during grain filling and by the relative humidity. Observed ranges in genotypic responses (variance) at locations also were altered by environmental factors. Optimal protein quality, as determined by SDS sedimentation volumes, was observed with exposure to less than 90 h of temperature greater than 32 °C during grain filling. Protein quality declined with exposure to a greater number of hours of elevated temperature.


Journal of Experimental Botany | 2015

Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change

Marta S. Lopes; Ibrahim Elbasyoni; P. S. Baenziger; Sukhwinder Singh; C. Royo; Kursad Ozbek; Husnu Aktas; Emel Ozer; Fatih Özdemir; Alagu Manickavelu; Tomohiro Ban; Prashant Vikram

Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.


BMC Plant Biology | 2012

Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

Jigang Han; Leny C. Galvez; Sharmila Mitra; P. S. Baenziger; Amitava Mitra

BackgroundThe development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticumaestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality.ResultsA construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance.ConclusionsIntrogression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.


Euphytica | 2006

Agronomic and quality effects in winter wheat of a gene conditioning resistance to wheat streak mosaic virus

L. A. Divis; Robert A. Graybosch; C. J. Peterson; P. S. Baenziger; Gary L. Hein; B. B. Beecher; T. J. Martin

Wheat streak mosaic virus (WSMV) is one of the most important diseases limiting winter wheat (Triticum aestivum L.) production in the western Great Plains of North America. There is no known effective WSMV resistance within the primary gene pool of wheat. However, a resistance gene (Wsm1) has been transferred to wheat from a perennial relative, intermediate wheat-grass [Thinopyrum intermedium (Host) Barkworth & DR Dewey]. Nebraska-adapted winter wheat lines carrying Wsm1 were used to characterize the effects of this alien introgression on agronomic and quality traits. Sister-lines from six breeding populations were evaluated under virus-free conditions, and under a naturally occurring viral infection. In uninfected locations, no significant difference for grain yield was detected between resistant (R) and susceptible (S) lines, when averaged over populations, but resistant lines had significantly higher test weights. Within populations, significantly higher grain yield was observed only in population 1, while significantly higher test weights occurred in populations 1, 2, 5 and 6. At the infected location, resistant lines were significantly higher in yield in five of six populations. In two of six populations, susceptible lines were significantly higher in bread loaf volume and bake mix time, while in the remaining populations, no significant quality differences were observed. As the Wsm1 gene provided yield advantages under viral infection, and there was no yield detriment in the absence of the virus, its deployment in hard winter wheat cultivars merits consideration.


Plant Disease | 2014

Quantification of Yield Loss Caused by Triticum mosaic virus and Wheat streak mosaic virus in Winter Wheat Under Field Conditions

E. Byamukama; Stephen N. Wegulo; Satyanarayana Tatineni; Gary L. Hein; Robert A. Graybosch; P. S. Baenziger; Roy C. French

Triticum mosaic virus (TriMV) and Wheat streak mosaic virus (WSMV) infect winter wheat (Triticum aestivum) in the Great Plains region of the United States. The two viruses are transmitted by wheat curl mites (Aceria tosichella), which also transmit High Plains virus. In a field study conducted in 2011 and 2012, winter wheat cultivars Millennium (WSMV-susceptible) and Mace (WSMV-resistant) were mechanically inoculated with TriMV, WSMV, TriMV+WSMV, or sterile water at the two-leaf growth stage. Chlorophyll meter (soil plant analysis development [SPAD]) readings, area under the SPAD progress curve (AUSPC), grain yield (=yield), yield components (spikes/m2, kernels/spike, 1,000-kernel weight), and aerial dry matter were determined. In Millennium, all measured variables were significantly reduced by single or double virus inoculation, with the greatest reductions occurring in the double-inoculated treatment. Among the yield components, the greatest reductions occurred in spikes/m2. In Mace, only AUSPC was significantly reduced by the TriMV+WSMV treatment in 2012. There was a significant (P ≤ 0.05), negative linear relationship between SPAD readings and day of year in all inoculation treatments in Millennium and in the TriMV+WSMV treatment in Mace. There were significant (P ≤ 0.05), positive linear relationships between yield and SPAD readings and between yield and aerial dry matter in Millennium but not in Mace. The results from this study indicate that under field conditions, (i) Mace, a WSMV-resistant cultivar, is also resistant to TriMV, and (ii) double inoculation of winter wheat by TriMV and WSMV exacerbates symptom expression and yield loss in a susceptible cultivar.


Cereal Chemistry | 2004

Genotypic and environmental modification of Asian noodle quality of hard winter wheats

Robert A. Graybosch; Nancy Ames; P. S. Baenziger; C. J. Peterson

ABSTRACT The relative effects of environment, genotype, and their interactions on the modification of Asian noodle quality attributes were assessed using 38 winter wheat (Triticum aestivum L.) cultivars and breeding lines grown in replicated trials at three Nebraska locations in harvest year 2000. Noodle color was determined in both white salted and yellow alkaline procedures, and noodle textural features were investigated by producing white salted noodles. Significant environmental, genotypic, and genotype-by-environment variation was observed for nearly all initial and 24-hr noodle color traits in both types of noodles. Significant genotypic effects were observed for several textural traits, while significant environmental effects were observed only for noodle hardness and water uptake. However, among the noodle textural traits, the genotype-by-environment interaction was significant only for noodle firmness. High and significant phenotypic correlations were observed between color traits in the two nood...

Collaboration


Dive into the P. S. Baenziger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. A. Nelson

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Robert A. Graybosch

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

D. D. Baltensperger

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. V. McVey

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

B. Moreno-Sevilla

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

J. E. Watkins

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

R. A. Graybosch

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yue Jin

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge