P.S. Tong
California Polytechnic State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P.S. Tong.
International Journal of Food Microbiology | 2011
Elizabeth W. Ng; Marie Yeung; P.S. Tong
Recognized to confer health benefits to consumers, probiotics such as Lactobacillus acidophilus are commonly incorporated into fermented dairy products worldwide; among which yogurt is a popular delivery vehicle. To materialize most of the putative health benefits associated with probiotics, an adequate amount of viable cells must be delivered at the time of consumption. However, the loss in their viabilities during refrigerated storage has been demonstrated previously. This study focused on the effects of yogurt starter cultures on the survival of five strains of L. acidophilus, with emphases on low pH and acid production. Differential survival behavior between L. acidophilus strains was further analyzed. To this end, viable cell counts of L. acidophilus were determined weekly during 4°C storage in various types of yogurts made with Streptococcus thermophilus alone, L. delbrueckii ssp. bulgaricus alone, both species of the starter cultures, or glucono-delta-lactone (GDL). All yogurt types, except for pasteurized yogurts, were co-fermented with L. acidophilus. Yogurt filtrate was analyzed for the presence of any inhibitory substance and for the amount of hydrogen peroxide. Multiplication of L. acidophilus was not affected by the starter cultures as all strains reached high level on day 0 of the storage period. Throughout the 28-day storage period, cell counts of L. acidophilus PIM703 and SBT2062 remained steady (~6 × 10(7)CFU/g) in yogurts made with both starter cultures, whereas those of ATCC 700396 and NCFM were reduced by a maximum of 3 and 4.6 logs, respectively. When starter cultures were replaced by GDL, all strains survived well, suggesting that a low pH was not a critical factor dictating their survival. In addition, the filtrate collected from yogurts made with starter cultures appeared to have higher inhibitory activities against L. acidophilus than that made with GDL. The presence of viable starter cultures was necessary to adversely affect the survival of some strains, as pasteurized yogurts had no effect on their survival. In particular, the inhibitory effect exerted by L. delbrueckii ssp. bulgaricus on L. acidophilus NCFM was highly pronounced than by S. thermophilus, nevertheless, the same effect was not observed on SBT2062. The inhibition against stationary-phase NCFM cells might be caused by the elevated level of hydrogen peroxide produced by L. delbrueckii ssp. bulgaricus. Delineating factors driving the differences in survival trait among probiotic strains will lead to a more efficacious delivery of health benefits in fermented dairy products through targeted technological interventions.
Journal of Dairy Science | 2012
X.Y. Mao; P.S. Tong; S. Gualco; Sean Vink
We investigated the surface hydrophobicity index based on different fluorescence probes [1-anilinonaphthalene-8-sulfonic acid (ANS) and 6-propionyl-2-(N,N-dimethylamino)-naphthalene (PRODAN)], free sulfhydryl and disulfide bond contents, and particle size of 80% milk protein concentrate (MPC80) powders prepared by adding various amounts of NaCl (0, 50, 100, and 150 mM) during the diafiltration process. The solubility of MPC80 powder was not strictly related to surface hydrophobicity. The MPC80 powder obtained by addition of 150 mM NaCl during diafiltration had the highest solubility but also the highest ANS-based surface hydrophobicity, the lowest PRODAN-based surface hydrophobicity, and the least aggregate formation. Intermolecular disulfide bonds caused by sulfhydryl-disulfide interchange reactions and hydrophobic interactions may be responsible for the lower solubility of the control MPC80 powder. The enhanced solubility of MPC80 powder with addition of NaCl during diafiltration may result from the modified surface hydrophobicity, the reduced intermolecular disulfide bonds, and the associated decrease in mean particle size. Addition of NaCl during the diafiltration process can modify the strength of hydrophobic interactions and sulfhydryl-disulfide interchange reactions and thereby affect protein aggregation and the solubility of MPC powders.
Journal of Dairy Science | 2011
V. Sikand; P.S. Tong; Soma Roy; Luis E. Rodriguez-Saona; B.A. Murray
High-protein milk protein concentrate (MPC) and milk protein isolate (MPI) powders may have lower solubility than low-protein MPC powders, but information is limited on MPC solubility. Our objectives in this study were to (1) characterize the solubility of commercially available powder types with differing protein contents such as MPC40, MPC80, and MPI obtained from various manufacturers (sources), and (2) determine if such differences could be associated with differences in mineral, protein composition, and conformational changes of the powders. To examine possible predictors of solubility as measured by percent suspension stability (%SS), mineral analysis, Fourier transform infrared (FTIR) spectroscopy, and quantitative protein analysis by HPLC was performed. After accounting for overall differences between powder types, %SS was found to be strongly associated with the calcium, magnesium, phosphorus, and sodium content of the powders. The FTIR score plots were in agreement with %SS results. A principal component analysis of FTIR spectra clustered the highly soluble MPC40 separately from the rest of samples. Furthermore, 2 highly soluble MPI samples were clustered separately from the rest of the MPC80 and MPI samples. We found that the 900 to 1,200 cm⁻¹ region exhibited the highest discriminating power, with dominant bands at 1,173 and 968 cm⁻¹, associated with phosphate vibrations. The 2 highly soluble MPI powders were observed to have lower κ-casein and α-(S1)-casein contents and slightly higher whey protein contents than the other powders. The differences in the solubility of MPC and MPI were associated with a difference in mineral composition, which may be attributed to differences in processing conditions. Additional studies on the role of minerals composition on MPC80 solubility are warranted. Such a study would provide a greater understanding of factors associated with differences in solubility and can provide insight on methods to improve solubility of high-protein milk protein concentrates.
Journal of Dairy Science | 2011
X.L. Wang; J. Zhou; P.S. Tong; X.Y. Mao
Many factors affect the bioavailability of dietary Zn, which leads to its low availability in some food systems and Zn nutrient deficiency. However, some proteins or peptides can form complexes with Zn and increase its absorption and bioavailability in intestinal conditions. The purpose of this work was to determine the Zn-binding activity of yak casein hydrolysate (YCH) and examine its stability, solubility, and dialyzability in a simulated intestinal environment. The Zn-binding activity of YCH, prepared using alcalase, pepsin, trypsin, Flavozyme (Novo Nordisk Biochem Inc., Franklinton, NC), or papain, was investigated. Evidence for the formation of complexes between Zn and YCH also were detected by UV-visible spectroscopy and Fourier transform infrared spectroscopy. Results were that YCH prepared with alcalase and trypsin possessed the highest Zn-binding capacity compared with YCH prepared with pepsin, Flavozyme, or papain. The 6-h YCH obtained with alcalase showed the highest Zn-binding capacity. Compared with native yak casein, the Zn-binding activity of YCH was significantly lower, but its solubility and dialyzability were markedly higher under intestinal basic pH ranges. This is important because high solubility and dialyzability is associated with better bioavailability. Both UV-visible spectroscopy and Fourier transform infrared spectroscopy spectra indicated that some sites of YCH can bind with Zn ions and form complexes that make Zn more soluble and dialyzable under simulated intestinal conditions. Therefore, YCH-Zn complexes may have potential to improve Zn bioavailability.
Journal of Applied Microbiology | 2004
P.S.M. Yeung; Christopher L. Kitts; R.J. Cano; P.S. Tong; Melinda E. Sanders
Aims: The objective of this study was to generate strain‐specific genomic patterns of a bank of 67 commercial and reference probiotic strains, with a focus on probiotic lactobacilli.
Journal of Dairy Science | 2010
V. Sikand; P.S. Tong; John Walker
We determined the effects of standardization material, protein content, and pH on the heat stability of reconstituted milk made from low-heat (LH) and medium-heat (MH) nonfat dry milk (NDM). Low-heat and MH NDM were standardized downward from 35.5% to 34, 32, and 30% protein by adding either edible lactose powder (ELP) or permeate powder (PP) from skim milk ultrafiltration. These powders were called standardized skim milk powders (SSMP). The LH and MH NDM and SSMP were reconstituted to 9% total solids. Furthermore, subsamples of reconstituted NDM and SSMP samples were set aside to measure heat stability at native (unadjusted) pH, and the rest were adjusted to pH 6.3 to 7.0. Heat stability is defined as heat coagulation time at 140°C of the reconstituted LH or MH NDM and SSMP samples. The entire experiment was replicated 3 times at unadjusted pH values and 2 times at adjusted pH values. At an unadjusted pH, powder type, standardization material, and protein content influenced the heat stability of the samples. Heat stability for reconstituted LH NDM and SSMP was higher than reconstituted MH NDM and SSMP. Generally, decreased heat stability was observed in reconstituted LH or MH SSMP as protein content was decreased by standardization. However, adding ELP to MH SSMP did not significantly change its heat stability. When pH was adjusted to values between 6.3 and 7.0, powder type, standardization material, and pH had a significant effect on heat stability, whereas protein content did not. Maximum heat stability was noted at pH 6.7 for both reconstituted LH NDM and SSMP samples, and at pH 6.6 for both reconstituted MH NDM and SSMP samples. Furthermore, for samples with adjusted pH, higher heat stability was observed for reconstituted LH SSMP containing PP compared with reconstituted milk from LH SSMP containing ELP. However, no statistical difference was observed in the heat stability of reconstituted milk from MH NDM and MH SSMP samples. We conclude that powder type (LH or MH) and effect of standardization material (ELP or PP) can help explain differences in heat stability. The difference in the heat stability of powder type may be associated with the difference in the pH of maximum heat stability and compositional differences in the standardization material (ELP or PP).
International Journal of Dairy Technology | 2014
Amy Lammert; Ammar Olabi; Loulwa Kalache; Katie Brooks; P.S. Tong
Asghar A, 2009, FOOD HYDROCOLLOID, V23, P1687, DOI 10.1016-j.foodhyd.2009.01.005; Beecher JW, 2008, J DAIRY SCI, V91, P2553, DOI 10.3168-jds.2008-1083; Whetstine MEC, 2005, J DAIRY SCI, V88, P3826; DEWIT JN, 1990, J DAIRY SCI, V73, P3602; Drake M. A., 2006, P 4 INT WHEY C, P292; Drake MA, 2007, J SENS STUD, V22, P433, DOI 10.1111-j.1745-459X.2007.00118.x; ENSOR SA, 1987, J FOOD SCI, V52, P1155, DOI 10.1111-j.1365-2621.1987.tb14032.x; Evans J, 2010, J DAIRY SCI, V93, P1824, DOI 10.3168-jds.2009-2723; Ha E, 2003, J NUTR BIOCHEM, V14, P251, DOI 10.1016-S0955-2863(03)00030-5; Hoffmann MAM, 1999, J AGR FOOD CHEM, V47, P1898, DOI 10.1021-jf980886e; Lawless H. T., 2010, SENSORY EVALUATION F; MacFie H. J., 1989, Journal of Sensory Studies, V4, P129, DOI 10.1111-j.1745-459X.1989.tb00463.x; Morr CV, 1991, INT DAIRY J, V1, P1, DOI 10.1016-S0958-6946(01)00093-0; Mortenson MA, 2008, INT DAIRY J, V18, P649, DOI 10.1016-j.idairyj.2007.12.003; PATEL MT, 1990, J DAIRY SCI, V73, P2731; Perez-Gago MB, 2006, POSTHARVEST BIOL TEC, V39, P84, DOI 10.1016-j.postharvbio.2005.08.002; Quinones HJ, 1998, J DAIRY SCI, V81, P884; Quinones HJ, 1997, J DAIRY SCI, V80, P3142; RICHERT SH, 1979, J AGR FOOD CHEM, V27, P665, DOI 10.1021-jf60224a036; Russell T A, 2006, J FOOD SCI, V71, P447; Smithers GW, 2008, INT DAIRY J, V18, P695, DOI 10.1016-j.idairyj.2008.03.008; Surh J, 2006, FOOD RES INT, V39, P761, DOI 10.1016-j.foodres.2006.01.007; Whetstine MEC, 2003, J DAIRY SCI, V86, P439; Whitson ME, 2010, J SENS STUD, V25, P616, DOI 10.1111-j.1745-459X.2010.00289.x; ZALL RR, 1984, J DAIRY SCI, V67, P2621
Journal of Dairy Science | 2015
H. Eshpari; Rafael Jiménez-Flores; P.S. Tong; Milena Corredig
Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble calcium present after reconstitution. This work, testing the chymosin-induced gelation behavior of various reconstituted MPC samples, clearly demonstrated that a decrease in pH to 6.0 during membrane filtration affects the integrity of the casein micelles supramolecular structure with important consequences to their processing functionality.
Food Research International | 2017
H. Eshpari; Rafael Jiménez-Flores; P.S. Tong; Milena Corredig
Milk protein concentrate (MPC) powders are increasingly utilized in manufacturing of protein fortified beverages. Thermal stability of the protein dispersions is of significant importance in such applications. It is known that a decrease in pH can induce partial dissociation of casein micelles and modify the natural equilibrium of calcium and phosphate between the micelles and the serum phase. The presence of soluble casein may improve the rehydration properties of MPC powders, and may impact their thermal stability. The objective of this work was to investigate the effects of partial acidification of milk prior to ultrafiltration on the heat stability of reconstituted MPC dispersions. Milk protein concentrate powders were prepared from skim milk acidified to pH6.0 by addition of glucono-δ-lactone, and then concentrated using ultrafiltration (UF) and diafiltration (DF). The heat stability of the reconstituted MPC dispersions was studied, by determining heat coagulation time, particle size, turbidity, viscosity, soluble and colloidal calcium and phosphate, and non-sedimentable casein both before and after heating at 120°C. Reconstituted MPC powders made with partially acidified skim milk contained lower soluble calcium and phosphate and exhibited very poor thermal stability compared to MPC powders made with skim milk at its natural pH. The thermal stability of the acidified MPC dispersions was not only recovered by restoration of pH and the serum composition through dialysis against skim milk, but it was improved compared to control MPC dispersions. All dialyzed samples had comparable pH, protein content and calcium and phosphate concentration, but the structure of the casein micelles was altered, causing differences in the type of soluble aggregates. It was concluded that the integrity of the casein micelles and the amount of dissociated, non-sedimentable caseins play a major role in determining the thermal stability of the MPC dispersions.
Journal of Dairy Science | 2016
V. Sikand; P.S. Tong; Sean Vink; Soma Roy
The objective of this study was to determine the effect of mineral chelator addition during skim milk powder (SMP) manufacture on the solubility, turbidity, soluble protein, and heat stability (HS). Three chelators (sodium citrate dihydrate, sodium polyphosphate, and disodium EDTA) at 3 different concentrations (5, 15, and 25mM) were added to skim milk concentrate (30% total solids), and the pH was adjusted to 6.65 before spray drying to produce SMP. Spray-dried SMP samples were tested for solubility index (SI). Additionally, samples were reconstituted to contain 9% total solids, adjusted to pH 7.0, and tested for turbidity, protein content from supernatants of ultracentrifuged samples, and HS. Lower SI values were observed for samples treated with 5mM disodium EDTA and sodium polyphosphate than control samples or samples with 5mM sodium citrate dihydrate. Furthermore, lower SI values were observed with an increased level of chelating agents regardless of chelator type. A decreased turbidity value was found with increasing levels of mineral chelating salt treatment. Low turbidity with increasing levels of added chelators may be associated with the dissociation of caseins from micelles. Furthermore, higher protein content was observed in supernatants of ultracentrifuged samples treated with increased level of chelators as compared with the control sample. Higher HS was observed in samples treated with 5mM compared with samples treated with 25mM mineral chelator. The results suggest improved solubility and HS upon addition of mineral chelators to SMP during its manufacture.