P. Saraceno
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Saraceno.
Astronomy and Astrophysics | 2010
V. Könyves; P. André; A. Men'shchikov; N. Schneider; D. Arzoumanian; Sylvain Bontemps; M. Attard; F. Motte; P. Didelon; A. Maury; Alain Abergel; B. Ali; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; Peter G. Martin; V. Minier; S. Molinari; G. Olofsson; S. Pezzuto; D. Russeil; Helene Roussel
The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys.
Astronomy and Astrophysics | 2010
A. Men'shchikov; P. André; P. Didelon; V. Könyves; N. Schneider; F. Motte; Sylvain Bontemps; D. Arzoumanian; M. Attard; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; P. G. Martin; V. Minier; M.-A. Miville-Deschênes; S. Molinari; G. Olofsson; S. Pezzuto; H. Roussel; D. Russeil; P. Saraceno
Our PACS and SPIRE images of the Aquila Rift and part of the Polaris Flare regions, taken during the science demonstration phase of Herschel discovered fascinating, omnipresent filamentary structures that appear to be physically related to compact cores. We briefly describe a new multi-scale, multi-wavelength source extraction method used to detect objects and measure their parameters in our Herschel images. All of the extracted starless cores (541 in Aquila and 302 in Polaris) appear to form in the long and very narrow filaments. With its combination of the far-IR resolution and sensitivity, Herschel directly reveals the filaments in which the dense cores are embedded; the filaments are resolved and have deconvolved widths of 35 arcsec in Aquila and 59 arcsec in Polaris (9000 AU in both regions). Our first results of observations with Herschel enable us to suggest that in general dense cores may originate in a process of fragmentation of complex networks of long, thin filaments, likely formed as a result of an interplay between gravity, interstellar turbulence, and magnetic fields. To unravel the roles of the processes, one has to obtain additional kinematic and polarization information; these follow-up observations are planned.
Astronomy and Astrophysics | 2010
F. Motte; A. Zavagno; Sylvain Bontemps; N. Schneider; M. Hennemann; J. Di Francesco; P. André; P. Saraceno; Matthew Joseph Griffin; A. Marston; Derek Ward-Thompson; G. J. White; V. Minier; A. Men'shchikov; T. Hill; Alain Abergel; L. D. Anderson; H. Aussel; Zoltan Balog; J.-P. Baluteau; J.-Ph. Bernard; P. Cox; T. Csengeri; L. Deharveng; P. Didelon; A. M. di Giorgio; Peter Charles Hargrave; M. Huang; Jason M. Kirk; S. J. Leeks
We present the initial highlights of the HOBYS key program, which are based on Herschel images of the Rosette molecular complex and maps of the RCW120 H ii region. Using both SPIRE at 250/350/500 μm and PACS at 70/160 μm or 100/160 μm, the HOBYS survey provides an unbiased and complete census of intermediate- to high-mass young stellar objects, some of which are not detected by Spitzer. Key core properties, such as bolometric luminosity and mass (as derived from spectral energy distributions), are used to constrain their evolutionary stages. We identify a handful of high-mass prestellar cores and show that their lifetimes could be shorter in the Rosette molecular complex than in nearby low-mass star-forming regions. We also quantify the impact of expanding H ii regions on the star formation process acting in both Rosette and RCW 120.
Astronomy and Astrophysics | 2010
Sylvain Bontemps; P. André; V. Könyves; A. Men'shchikov; N. Schneider; A. Maury; Nicolas Peretto; D. Arzoumanian; M. Attard; F. Motte; V. Minier; P. Didelon; P. Saraceno; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. Di Giorgo; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; P. G. Martin; Bruno Merín; S. Molinari; G. Olofsson; S. Pezzuto
As part of the science demonstration phase of the Herschel mission of the Gould Belt Key Program, the Aquila Rift molecular complex has been observed. The complete ~ 3.3deg x 3.3deg imaging with SPIRE 250/350/500 micron and PACS 70/160 micron allows a deep investigation of embedded protostellar phases, probing of the dust emission from warm inner regions at 70 and 160 micron to the bulk of the cold envelopes between 250 and 500 micron. We used a systematic detection technique operating simultaneously on all Herschel bands to build a sample of protostars. Spectral energy distributions are derived to measure luminosities and envelope masses, and to place the protostars in an M_env - L_bol evolutionary diagram. The spatial distribution of protostars indicates three star-forming sites in Aquila, with W40/Sh2-64 HII region by far the richest. Most of the detected protostars are newly discovered. For a reduced area around the Serpens South cluster, we could compare the Herschel census of protostars with Spitzer results. The Herschel protostars are younger than in Spitzer with 7 Class 0 YSOs newly revealed by Herschel. For the entire Aquila field, we find a total of ~ 45-60 Class 0 YSOs discovered by Herschel. This confirms the global statistics of several hundred Class~0 YSOs that should be found in the whole Gould Belt survey.
Astronomy and Astrophysics | 2010
B. Nisini; M. Benedettini; C. Codella; T. Giannini; R. Liseau; David A. Neufeld; M. Tafalla; E. F. van Dishoeck; R. Bachiller; Alain Baudry; Arnold O. Benz; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; S. Bruderer; P. Caselli; J. Cernicharo; F. Daniel; P. Encrenaz; A. M. di Giorgio; C. Dominik; S. D. Doty; Michel Fich; A. Fuente; J. R. Goicoechea; Th. de Graauw; Frank Helmich; Gregory J. Herczeg
Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims. In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 mu m transition obtained toward the young outflow L1157. Methods. The 179 mu m map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 mu m emission is spatially correlated with emission from H-2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 mu m intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10(-4). This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is similar to 10(-1) L-circle dot, about 40% of the cooling due to H-2 and 23% of the total energy released in shocks along the L1157 outflow.
Astronomy and Astrophysics | 2010
C. Ceccarelli; A. Bacmann; A. C. A. Boogert; E. Caux; C. Dominik; B. Lefloch; Dariusz C. Lis; P. Schilke; F. F. S. van der Tak; P. Caselli; J. Cernicharo; C. Codella; C. Comito; A. Fuente; Alain Baudry; T. A. Bell; M. Benedettini; Edwin A. Bergin; Geoffrey A. Blake; Sandrine Bottinelli; S. Cabrit; A. Castets; A. Coutens; N. Crimier; K. Demyk; P. Encrenaz; E. Falgarone; M. Gerin; Paul F. Goldsmith; Frank Helmich
High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project “Chemical HErschel Surveys of Star forming regions”, CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 × 105 L_ȯ: L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence/absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Figures [see full textsee full text]-[see full textsee full text] and Tables 3, 4 (pages 6 to 8) are only available in electronic form at http://www.aanda.org
Astronomy and Astrophysics | 2012
S. Pezzuto; D. Elia; E. Schisano; F. Strafella; J. Di Francesco; S. Sadavoy; P. André; M. Benedettini; J.-P. Bernard; A. M. di Giorgio; A. Facchini; M. Hennemann; T. Hill; V. Könyves; S. Molinari; F. Motte; Q. Nguyen-Luong; Nicolas Peretto; M. Pestalozzi; D. Polychroni; K. L. J. Rygl; P. Saraceno; N. Schneider; L. Spinoglio; L. Testi; Derek Ward-Thompson; G. J. White
We report far-infrared Herschel observations obtained between 70 μm and 500 μm of two star-forming dusty condensations, [HKM99] B1-bS and [HKM99] B1-bN, in the B1 region of the Perseus star-forming cloud. In the western part of the Perseus cloud, B1-bS is the only source detected in all six PACS and SPIRE photometric bands, but it is not visible in the Spitzer map at 24 μm. B1-bN is clearly detected between 100 μm and 250 μm. We have fitted the spectral energy distributions of these sources to derive their physical properties, and find that a simple greybody model fails to reproduce the observed spectral energy distributions. At least a two-component model is required, consisting of a central source surrounded by a dusty envelope. The properties derived from the fit, however, suggest that the central source is not a Class 0 object. We then conclude that while B1-bS and B1-bN appear to be more evolved than a pre-stellar core, the best-fit models suggest that their central objects are younger than a Class 0 source. Hence, they may be good candidates to be examples of the first hydrostatic core phase. The projected distance between B1-bS and B1-bN is a few Jeans lengths. If their physical separation is close to this value, this pair would allow studying the mutual interactions between two forming stars at a very early stage of their evolution.
Astronomy and Astrophysics | 2010
Derek Ward-Thompson; Jason M. Kirk; P. André; P. Saraceno; P. Didelon; V. Könyves; N. Schneider; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; Sylvain Bontemps; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; J. Z. Li; P. G. Martin; A. Men'shchikov; V. Minier; S. Molinari; F. Motte; G. Olofsson; S. Pezzuto; D. Russeil; Marc Sauvage; B. Sibthorpe; L. Spinoglio
The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potential prestellar cores in the Polaris cloud region.
Astronomy and Astrophysics | 2010
Edwin A. Bergin; M. R. Hogerheijde; C. Brinch; Jeffrey K. J. Fogel; U. A. Yıldız; L. E. Kristensen; E. F. van Dishoeck; T. A. Bell; Geoffrey A. Blake; J. Cernicharo; C. Dominik; D. C. Lis; Gary J. Melnick; David A. Neufeld; Olja Panić; J. C. Pearson; R. Bachiller; A. Baudry; M. Benedettini; Arnold O. Benz; P. Bjerkeli; Sylvain Bontemps; J. Braine; S. Bruderer; P. Caselli; C. Codella; F. Daniel; A. M. di Giorgio; S. D. Doty; P. Encrenaz
We performed a sensitive search for the ground-state emission lines of ortho- and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the 1_{11}--0_{00} line. We report a very tentative detection, however, of the 1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s. The latter constitutes a 6sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
Astronomy and Astrophysics | 2010
Arnold O. Benz; S. Bruderer; E. F. van Dishoeck; P. Stäuber; S. F. Wampfler; M. Melchior; C. Dedes; F. Wyrowski; S. D. Doty; F. F. S. van der Tak; W. Bächtold; Andre Csillaghy; A. Megej; C. Monstein; M. Soldati; R. Bachiller; Alain Baudry; M. Benedettini; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; P. Caselli; J. Cernicharo; C. Codella; F. Daniel; A. M. di Giorgio; P. Dieleman; C. Dominik
Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods. W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (� 2500 s) in 8 spectral regions. Results. The target lines including CH, NH, H3O + , and the new molecules SH + ,H 2O + ,a nd OH + are detected. The H2O + and OH + J = 1−0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O + and OH + also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions. The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation.