P. Stier
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Stier.
Journal of Geophysical Research | 2004
Elisabetta Vignati; Julian Wilson; P. Stier
[1] An aerosol model (M7) designed to be coupled to general circulation models (GCM) and chemistry transport models (CTM) is described. In M7 the aerosol population is divided into two types of particles: mixed, or water-soluble particles, and insoluble particles. The particles are represented by seven classes, using a ‘‘pseudomodal’’ approach. Four classes are for the mixed particles representing nucleation, Aitken, accumulation, and coarse mode, and three are for the insoluble (Aitken, accumulation, and coarse mode). The components considered are mineral dust, black carbon (BC) and primary organic carbon (OC), sulfate, and sea salt. The aerosol dynamic processes in M7 include nucleation, coagulation, and condensation of sulfuric acid. Mixed particles are formed from insoluble particles by coagulation and condensation. The integration scheme is computationally very efficient. The model has been tested against the analytical solution and a sectional model for the formation of SO4/BC mixed particles, evaluating the mixing by condensation and coagulation. Furthermore, M7 has been run in free tropospheric conditions and compared to aircraft observations. M7 has proven to be accurate and fast enough to be included in a GCM or CTM. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; KEYWORDS: aerosol particles, pseudomodal algorithm, aerosol dynamics, mixed particles
Geophysical Research Letters | 2010
Joshua P. Schwarz; J. R. Spackman; R. S. Gao; Leon Adam Watts; P. Stier; Michael Schulz; Sean M. Davis; Steven C. Wofsy; D. W. Fahey
[1] Refractory black carbon (rBC) aerosol loadings and mass size distributions have been quantified during the HIPPO campaign above the remote Pacific from 80N to 67S. Over 100 vertical profiles of rBC loadings, extending from ∼0.3 to ∼14 km were obtained with a Single-Particle Soot Photometer (SP2) during a two-week period in January 2009. The dataset provides a striking, and previously unobtainable, pole-to-pole snapshot of rBC mass loadings. rBC vertical concentration profiles reveal significant dependences on latitude, while associated rBC mass size distributions were highly uniform. The vertical profiles averaged in five latitude zones were compared to an ensemble of AEROCOM model fields. The model ensemble spread in each zone was over an order of magnitude, while the model average over-predicted rBC concentrations overall by a factor five. The comparisons suggest that rBC removal in global models may need to be evaluated separately in different latitude regions and perhaps enhanced.
Journal of Geophysical Research | 2012
Brigitte Koffi; Michael Schulz; François-Marie Bréon; Jan Griesfeller; David M. Winker; Yves Balkanski; Susanne E. Bauer; Terje K. Berntsen; Mian Chin; William D. Collins; Frank Dentener; Thomas Diehl; Richard C. Easter; Steven J. Ghan; Paul Ginoux; Sunling Gong; Larry W. Horowitz; Trond Iversen; A. Kirkevåg; Dorothy M. Koch; M. Krol; Gunnar Myhre; P. Stier; Toshihiko Takemura
[1] The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007–2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Za) is defined to quantitatively assess the models’ performance. It is calculated over the 0–6 km and 0–10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Za climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Za than observed by CALIOP, whereas over the African and Chinese dust source regions, Za is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Za is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.
Atmospheric Chemistry and Physics | 2013
L. A. Lee; K. J. Pringle; C. L. Reddington; G. W. Mann; P. Stier; D. V. Spracklen; Jeffrey R. Pierce; Kenneth S. Carslaw
Abstract. Aerosol–cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day concentrations of cloud condensation nuclei (CCN). Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each model grid cell. The standard deviation around the mean CCN varies globally between about ±30% over some marine regions to ±40–100% over most land areas and high latitudes, implying that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol–cloud effects on climate. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulfate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulfur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulfate formation during cloud-processing. The results lead to several recommendations for research that would result in improved modelling of cloud–active aerosol on a global scale.
Geophysical Research Letters | 2013
Joshua P. Schwarz; Bjørn H. Samset; A. E. Perring; J. R. Spackman; R. S. Gao; P. Stier; Michael Schulz; F. L. Moore; Eric A. Ray; D. W. Fahey
[1] Black carbon (BC) aerosol loadings were measured during the High-performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole Observations (HIPPO) campaign above the remote Pacific from 85°N to 67°S. Over 700 vertical profiles extending from near the surface to max ∼14 km altitude were obtained with a single-particle soot photometer between early 2009 and mid-2011. The data provides a climatology of BC in the remote regions that reveals gradients of BC concentration reflecting global-scale transport and removal of pollution. BC is identified as a sensitive tracer of extratropical mixing into the lower tropical tropopause layer and trends toward surprisingly uniform loadings in the lower stratosphere of ∼1 ng/kg. The climatology is compared to predictions from the AeroCom global model intercomparison initiative. The AeroCom model suite overestimates loads in the upper troposphere/lower stratosphere (∼10×) more severely than at lower altitudes (∼3×), with bias roughly independent of season or geographic location; these results indicate that it overestimates BC lifetime.
Journal of Geophysical Research | 2008
L. Pozzoli; Isabelle Bey; Sebastian Rast; Martin G. Schultz; P. Stier; Johann Feichter
In this paper, we introduce the ECHAM5-HAMMOZ aerosol- chemistry-climate model that includes fully interactive simulations of Ox-NOx-hydrocarbons chemistry and of aerosol microphysics (including prognostic size distribution and mixing state of aerosols) implemented in the General Circulation Model ECHAM5. The photolysis rates used in the gas chemistry account for aerosol and cloud distributions and a comprehensive set of heterogeneous reactions is implemented. The model is evaluated with trace gas and aerosol observations provided by the TRACE-P aircraft experiment. Sulfate concentrations are well captured but black carbon concentrations are underestimated. The number concentrations, surface areas, and optical properties are reproduced fairly well near the surface but underestimated in the upper troposphere. CO concentrations are well reproduced in general while
Journal of Climate | 2006
P. Stier; Johann Feichter; Silvia Kloster; E. Vignati; Julian Wilson
{O}_{3}
Proceedings of the National Academy of Sciences of the United States of America | 2016
Steven J. Ghan; Minghuai Wang; Shipeng Zhang; Sylvaine Ferrachat; Andrew Gettelman; Jan Griesfeller; Zak Kipling; Ulrike Lohmann; Hugh Morrison; David Neubauer; Daniel G. Partridge; P. Stier; Toshihiko Takemura; Hailong Wang; Kai Zhang
concentrations are overestimated by 10-20 ppbv. We find that heterogeneous chemistry significantly influences the regional and global distributions of a number of key trace gases. Heterogeneous reactions reduce the ozone surface concentrations by 18-23% over the TRACE-P region and the global annual mean
Journal of Geophysical Research | 2008
L. Pozzoli; Isabelle Bey; Sebastian Rast; Martin G. Schultz; P. Stier; Johann Feichter
{O}_{3}
Geophysical Research Letters | 2014
Edward Gryspeerdt; P. Stier; Benjamin S. Grandey
burden by 7%. The annual global mean OH concentration decreases by 10% inducing a 7% increase in the global CO burden. Annual global mean