Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Suresh C. Rao is active.

Publication


Featured researches published by P. Suresh C. Rao.


Water Resources Research | 2010

The future of hydrology: An evolving science for a changing world

Thorsten Wagener; Murugesu Sivapalan; Peter Troch; Brian L. McGlynn; Ciaran J. Harman; Hoshin V. Gupta; Praveen Kumar; P. Suresh C. Rao; Nandita B. Basu; Jennifer S. Wilson

Human activities exert global-scale impacts on our environment with significant implications for freshwater-driven services and hazards for humans and nature. Our approach to the science of hydrology needs to significantly change so that we can understand and predict these implications. Such an adjustment is a necessary prerequisite for the development of sustainable water resource management strategies and to achieve long-term water security for people and the environment. Hydrology requires a paradigm shift in which predictions of system behavior that are beyond the range of previously observed variability or that result from significant alterations of physical (structural) system characteristics become the new norm. To achieve this shift, hydrologists must become both synthesists, observing and analyzing the system as a holistic entity, and analysts, understanding the functioning of individual system components, while operating firmly within a well-designed hypothesis testing framework. Cross-disciplinary integration must become a primary characteristic of hydrologic research, catalyzing new research and nurturing new educational models. The test of our quantitative understanding across atmosphere, hydrosphere, lithosphere, biosphere, and anthroposphere will necessarily lie in new approaches to benchmark our ability to predict the regional hydrologic and connected implications of environmental change. To address these challenges and to serve as a catalyst to bring about the necessary changes to hydrologic science, we call for a long-term initiative to address the regional implications of environmental change.


Geophysical Research Letters | 2010

Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity

Nandita B. Basu; Georgia Destouni; James W. Jawitz; Sally E. Thompson; Natalia V. Loukinova; Amélie Darracq; S. Zanardo; Mary A. Yaeger; Murugesu Sivapalan; Andrea Rinaldo; P. Suresh C. Rao

Complexity of heterogeneous catchments poses challenges in predicting biogeochemical responses to human alterations and stochastic hydro?climatic drivers. Human interferences and climate change may have contributed to the demise of hydrologic stationarity, but our synthesis of a large body of observational data suggests that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long?term monitoring data from the Mississippi?Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter?annual variations in loads (LT) for total?N (TN) and total?P (TP), exported from a catchment are dominantly controlled by discharge (QT) leading inevitably to temporal invariance of the annual, flow?weighted concentration, Cf = (LT/QT). Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents that also exhibit a linear LT?QT relationship. These responses are characteristic of transport?limited systems. In contrast, in the absence of legacy sources in less?managed catchments, Cf values were highly variable and supply limited. We offer a theoretical explanation for the observed patterns at the event scale, and extend it to consider the stochastic nature of rainfall/flow patterns at annual scales. Our analysis suggests that: (1) expected inter?annual variations in LT can be robustly predicted given discharge variations arising from hydro?climatic or anthropogenic forcing, and (2) water?quality problems in receiving inland and coastal waters would persist until the accumulated storages of nutrients have been substantially depleted. The finding has notable implications on catchment management to mitigate adverse water?quality impacts, and on acceleration of global biogeochemical cycles.


Water Resources Research | 1997

Field‐scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation

P. Suresh C. Rao; Michael D. Annable; Randall K. Sillan; Dongping Dai; Kirk Hatfield; Wendy D. Graham; A. Lynn Wood; Carl G. Enfield

A comprehensive, field-scale evaluation of in situ cosolvent flushing for enhanced remediation of nonaqueous phase liquid (NAPL)-contaminated aquifers was performed in a hydraulically isolated test cell (about 4.3 m × 3.6 m) constructed at a field site at Hill Air Force Base, Utah. This sand-gravel-cobble surficial aquifer, underlain by a deep clay confining unit at about 6 m below ground surface, was contaminated with a multicomponent NAPL as a result of jet fuel and chlorinated solvent disposal during the 1940s and 1950s. The water table within the test cell was raised to create a 1.5 m saturated flow zone that contained the NAPL smear zone. The cosolvent flushing test consisted of pumping about 40,000 L (approximately nine pore volumes) of a ternary cosolvent mixture (70% ethanol, 12% n-pentanol, and 18% water) through the test cell over a period of 10 days, followed by flushing with water for another 20 days. Several methods for assessing site remediation yielded consistent results, indicating that on the average >85% mass of the several target contaminants was removed as a result of the cosolvent flushing; NAPL constituent removal effectiveness was greater (90–99+%) in the upper 1-m zone, in comparison to about 70–80% in the bottom 0.5-m zone near the clay confining unit. Various interacting factors that control the hydrodynamic sweep efficiency, and the NAPL removal effectiveness during cosolvent flushing in this unconfined aquifer are discussed.


Water Resources Research | 1997

Determination of effective air‐water interfacial area in partially saturated porous media using surfactant adsorption

Heonki Kim; P. Suresh C. Rao; Michael D. Annable

The effective specific air-water interfacial area (a¯i) in a sand-packed column was measured at several water saturations (Sw) using a surface-reactive tracer (sodium dodecylbenzene sulfonate (SDBS)) and a nonreactive tracer (bromide). Miscible displacement experiments were conducted under steady water flow conditions to quantify the retardation of SDBS resulting from its adsorption onto the air-water interface in a sand-packed column. A consistent trend of increased retardation of SDBS compared with the nonreactive tracer, bromide, was observed with decreasing Sw. The data for air-water surface tension measured at various SDBS concentrations were interpreted using the Gibbs model to estimate the required adsorption parameters. The retardation factors (Rt) for SDBS breakthrough curves were then used in combination with the estimated SDBS adsorption coefficient to calculate the a¯i values at different Sw. For the range of experimental conditions employed in this study, the retardation factor for SDBS ranged from Rt = 1.00 at Sw = 1.00 (Rt < 1 due to SDBS sorption on sand) to Rt = 3.44 at Sw = 0.29 (which corresponds to a¯i = 46 cm2/c/m3). These values are in agreement with theoretical predictions and recently published data. Improvements needed to overcome the experimental limitations of the presented method are also discussed.


Water Resources Research | 1992

Modeling solute transport influenced by multiprocess nonequilibrium and transformation reactions

Mark L. Brusseau; Ron E. Jessup; P. Suresh C. Rao

We present an advective-dispersive solute transport model that explicitly accounts for multiple sources of nonequilibrium and transformation reactions during steady state flow in porous media. The multiprocess nonequilibrium with transformation (MPNET) model is formulated for cases where nonequilibrium, caused by a combination of transport-related and sorption-related processes, and abiotic/biotic transformations can be described as first-order processes. The impact of the coupling of nonequilibrium and transformation reactions on solute transport is examined using selected illustrative examples. The performance of the model is evaluated by comparing predictions obtained with the model, where values for all model parameters are obtained independently, to a data set obtained from the literature. The prediction obtained with the MPNET model matched the data very well, much better than did the predictions obtained with the MPNET model assuming no degradation and with a model that does not account for rate-limited sorption.


Journal of Contaminant Hydrology | 2004

Controlled release, blind test of DNAPL remediation by ethanol flushing

Michael C. Brooks; Michael D. Annable; P. Suresh C. Rao; Kirk Hatfield; James W. Jawitz; William R. Wise; A. Lynn Wood; Carl G. Enfield

A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.


Journal of Contaminant Hydrology | 2000

NAPL source zone characterization and remediation technology performance assessment : Recent developments and applications of tracer techniques

P. Suresh C. Rao; Michael D. Annable; Heonki Kim

Abstract Several innovative tracer techniques have been introduced during the past 5 years for enhanced characterization of the “source zones” at sites contaminated with non-aqueous phase liquid (NAPL) wastes. These tracer techniques allow for an in situ estimation of domain-averaged values and spatial patterns for NAPL saturation ( S n ), NAPL–water interfacial area ( a nw ), and bio-geochemical reactivity ( k s ) within the target test zone. The tracer tests can be used to evaluate the spatial patterns in these parameters, both before and after implementing some in situ technique for site cleanup, in order to evaluate the effectiveness of remediation achieved and the possible impacts of the cleanup technology on hydrodynamic and bio-geochemical processes. Here, we review the theoretical and experimental basis for these tracer methods, present selected examples of recent field-scale applications, and examine their reliability.


Chemosphere | 1990

COSOLVENT EFFECTS ON SORPTION AND MOBILITY OF ORGANIC CONTAMINANTS IN SOILS

A. Lynn Wood; Dermont Bouchard; Mark L. Brusseau; P. Suresh C. Rao

Abstract Batch equilibrium and column miscible displacement techniques were used to investigate the influence of an organic cosolvent (methanol) on the sorption and transport of three hydrophobic organic chemicals (HOCs) — naphthalene, phenanthrene, and diuron herbicide — in a sandy surface soil (Eustis fine sand). Equilibrium sorption constant (K) values calculated from batch and column data exhibited an inverse log-linear dependence on the volume fraction (fc) of methanol in the mixed solvent. The slope of the log-linear plot was approximately equal to the logarithm of the ratio of the HOC solubilities in neat cosolvent and water. K values obtained from breakthrough curves (BTCs) were comparable to those estimated from equilibrium sorption isotherms. Long-term exposure to methanol-water mixtures had little effect on sorption and transport properties of the soil, but column retardation factors were influenced by the short-term solvent exposure history prior to solute elution.


Journal of Contaminant Hydrology | 2008

Changes in contaminant mass discharge from DNAPL source mass depletion: Evaluation at two field sites

Michael C. Brooks; A. Lynn Wood; Michael D. Annable; Kirk Hatfield; Jaehyun Cho; Charles Holbert; P. Suresh C. Rao; Carl G. Enfield; Kira Lynch; Richard E. Smith

Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.


Water Resources Research | 1998

Evaluation of in situ cosolvent flushing dynamics using a network of spatially distributed multilevel samplers

Randall K. Sillan; Michael D. Annable; P. Suresh C. Rao; Dongping Dai; Kirk Hatfield; Wendy D. Graham; A. Lynn Wood; Carl G. Enfield

A network of multilevel samplers was used to evaluate the spatial patterns in contaminant extraction during an in situ cosolvent flushing field test. The study was conducted in an isolation test cell installed in a fuel contaminated site at Hill Air Force Base, Utah. Partitioning tracer tests, conducted before and after the cosolvent flush, were used to estimate the spatial distribution of nonaqueous phase liquids (NAPL) and the effectiveness of cosolvent flushing for removing NAPL. Samples collected during the cosolvent flushing test were used to visualize the extraction process. The results of these two analyses showed similar spatial trends in mass removal and were in general agreement with observations based on soil core data. In general, the cosolvents were more effective in the upper portion of the flow domain and had slightly lower mass removal effectiveness in the lower portion of the flow domain. In this region, tracers indicated slower transport rates and higher NAPL saturations. The spatial analysis also indicated that cosolvent was trapped in the capillary fringe increasing the time required to displace the cosolvent from the aquifer. These results demonstrate the value of spatial information for performance assessment and improving in situ flushing design strategies.

Collaboration


Dive into the P. Suresh C. Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Lynn Wood

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl G. Enfield

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Rinaldo

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge