Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Suzanne Hart is active.

Publication


Featured researches published by P. Suzanne Hart.


American Journal of Human Genetics | 2002

A Mutation in the SOS1 Gene Causes Hereditary Gingival Fibromatosis Type 1

Thomas C. Hart; Yingze Zhang; Michael C. Gorry; P. Suzanne Hart; Margaret E. Cooper; Mary L. Marazita; Jared M. Marks; José Roberto Cortelli; Débora Pallos

Hereditary gingival fibromatosis (HGF) is a rare, autosomal dominant form of gingival overgrowth. Affected individuals have a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of the oral masticatory mucosa. Genetic loci for autosomal dominant forms of HGF have been localized to chromosome 2p21-p22 (HGF1) and chromosome 5q13-q22 (HGF2). To identify the gene responsible for HGF1, we extended genetic linkage studies to refine the chromosome 2p21-p22 candidate interval to approximately 2.3 Mb. Development of an integrated physical and genetic map of the interval identified 16 genes. Sequencing of these genes, in affected and unaffected HGF1 family members, identified a mutation in the Son of sevenless-1 (SOS1) gene in affected individuals. In this report, we describe the genomic structure of the SOS1 gene and present evidence that insertion of a cytosine between nucleotides 126,142 and 126,143 in codon 1083 of the SOS1 gene is responsible for HGF1. This insertion mutation, which segregates in a dominant manner over four generations, introduces a frameshift and creates a premature stop codon, abolishing four functionally important proline-rich SH3 binding domains normally present in the carboxyl-terminal region of the SOS1 protein. The resultant protein chimera contains the wild-type SOS1 protein for the N-terminal amino acids 1-1083 fused to a novel 22-amino acid carboxyl terminus. Similar SOS1 deletion constructs are functional in animal models, and a transgenic mouse construct with a comparable SOS1 chimera produces a phenotype with skin hypertrophy. Clarification of the functional role of this SOS1 mutant has implications for understanding other forms of gingival fibromatosis and corrective gingival-tissue management.


Nature Genetics | 2013

Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

Andrew Kirby; Andreas Gnirke; David B. Jaffe; Veronika Barešová; Nathalie Pochet; Brendan Blumenstiel; Chun Ye; Daniel Aird; Christine Stevens; James Robinson; Moran N. Cabili; Irit Gat-Viks; Edward Kelliher; Riza Daza; Matthew DeFelice; Helena Hůlková; Jana Sovová; Petr Vylet’al; Corinne Antignac; Mitchell Guttman; Robert E. Handsaker; Danielle Perrin; Scott Steelman; Snaevar Sigurdsson; Steven J. Scheinman; Carrie Sougnez; Kristian Cibulskis; Melissa Parkin; Todd Green; Elizabeth Rossin

Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.


American Journal of Human Genetics | 2009

Dominant Renin Gene Mutations Associated with Early-Onset Hyperuricemia, Anemia, and Chronic Kidney Failure

Martina Živná; Helena Hůlková; Marie Matignon; Kateřina Hodaňová; Petr Vyletal; Marie Kalbacova; Veronika Barešová; Jakub Sikora; Hana Blažková; Jan Živný; Robert Ivánek; Viktor Stránecký; Jana Sovová; Kathleen Claes; Evelyne Lerut; Jean Pierre Fryns; P. Suzanne Hart; Thomas C. Hart; Jeremy N. Adams; Audrey Pawtowski; Maud Clemessy; Jean Marie Gasc; Marie Claire Gubler; Corinne Antignac; Milan Elleder; Katja Kapp; Philippe Grimbert; Anthony J. Bleyer; Stanislav Kmoch

Through linkage analysis and candidate gene sequencing, we identified three unrelated families with the autosomal-dominant inheritance of early onset anemia, hypouricosuric hyperuricemia, progressive kidney failure, and mutations resulting either in the deletion (p.Leu16del) or the amino acid exchange (p.Leu16Arg) of a single leucine residue in the signal sequence of renin. Both mutations decrease signal sequence hydrophobicity and are predicted by bioinformatic analyses to damage targeting and cotranslational translocation of preprorenin into the endoplasmic reticulum (ER). Transfection and in vitro studies confirmed that both mutations affect ER translocation and processing of nascent preprorenin, resulting either in reduced (p.Leu16del) or abolished (p.Leu16Arg) prorenin and renin biosynthesis and secretion. Expression of renin and other components of the renin-angiotensin system was decreased accordingly in kidney biopsy specimens from affected individuals. Cells stably expressing the p.Leu16del protein showed activated ER stress, unfolded protein response, and reduced growth rate. It is likely that expression of the mutant proteins has a dominant toxic effect gradually reducing the viability of renin-expressing cells. This alters the intrarenal renin-angiotensin system and the juxtaglomerular apparatus functionality and leads to nephron dropout and progressive kidney failure. Our findings provide insight into the functionality of renin-angiotensin system and stress the importance of renin analysis in families and individuals with early onset hyperuricemia, anemia, and progressive kidney failure.


Cells Tissues Organs | 2011

Amelogenesis Imperfecta: Genotype-Phenotype Studies in 71 Families

J. Timothy Wright; Melody Torain; Kimberly Long; Kim Seow; Peter J. M. Crawford; Michael J. Aldred; P. Suzanne Hart; Tom C. Hart

Amelogenesis imperfecta (AI) represents hereditary conditions affecting the quality and quantity of enamel. Six genes are known to cause AI (AMELX, ENAM, MMP20, KLK4, FAM83H, and WDR72). Our aim was to determine the distribution of different gene mutations in a large AI population and evaluate phenotype-genotype relationships. Affected and unaffected family members were evaluated clinically and radiographically by one examiner. Genotyping was completed using genomic DNA obtained from blood or saliva. A total of 494 individuals were enrolled, with 430 (224 affected, 202 unaffected, and 4 not definitive) belonging to 71 families with conditions consistent with the diagnosis of AI. Diverse clinical phenotypes were observed (i.e. hypoplastic, hypocalcified, and hypomaturation). Genotyping revealed mutations in all 6 candidate genes. A molecular diagnosis was made in 132 affected individuals (59%) and in 26 of the families (37%). Mutations involved 12 families with FAM83H (46%), 6 families with AMELX (23%), 3 families with ENAM (11%), 2 families with KLK4 and MMP20 (8% for each gene), and 1 family with a WDR72 mutation (4%). Phenotypic variants were associated with allelic FAM83H and AMELX mutations. Two seemingly unrelated families had the same KLK4 mutation. Families affected with AI where candidate gene mutations were not identified could have mutations not identifiable by traditional gene sequencing (e.g. exon deletion) or they could have promoter sequence mutations not evaluated in this study. However, the results suggest that there remain new AI causative genes to be identified.


Human Mutation | 2008

A comprehensive analysis of normal variation and disease-causing mutations in the human DSPP gene

Dianalee A. McKnight; P. Suzanne Hart; Thomas C. Hart; James K. Hartsfield; Anne Wilson; J. Timothy Wright; Larry W. Fisher

Within nine dentin dysplasia (DD) (type II) and dentinogenesis imperfecta (type II and III) patient/families, seven have 1 of 4 net –1 deletions within the ∼2‐kb coding repeat domain of the DSPP gene while the remaining two patients have splice‐site mutations. All frameshift mutations are predicted to change the highly soluble DSPP protein into proteins with long hydrophobic amino acid repeats that could interfere with processing of normal DSPP and/or other secreted matrix proteins. We propose that all previously reported missense, nonsense, and splice‐site DSPP mutations (all associated with exons 2 and 3) result in dominant phenotypes due to disruption of signal peptide‐processing and/or related biochemical events that also result in interference with protein processing. This would bring the currently known dominant forms of the human disease phenotype in agreement with the normal phenotype of the heterozygous null Dspp (–/+) mice. A study of 188 normal human chromosomes revealed a hypervariable DSPP repeat domain with extraordinary rates of change including 20 slip‐replication indel events and 37 predominantly C‐to‐T transition SNPs. The most frequent transition in the primordial 9‐basepair (bp) DNA repeat was a sense‐strand CpG site while a CpNpG (CAG) transition was the second most frequent SNP. Bisulfite‐sequencing of genomic DNA showed that the DSPP repeat can be methylated at both motifs. This suggests that, like plants and some animals, humans methylate some CpNpG sequences. Analysis of 37 haplotypes of the highly variable DSPP gene from geographically diverse people suggests it may be a useful autosomal marker in human migration studies. Hum Mutat 0, 1–13, 2008. Published 2008, Wiley‐Liss, Inc.


Cells Tissues Organs | 2007

Disorders of human dentin.

P. Suzanne Hart; Thomas C. Hart

Dentin, the most abundant tissue in teeth, is produced by odontoblasts, which differentiate from mesenchymal cells of the dental papilla. Dentinogenesis is a highly controlled process that results in the conversion of unmineralized predentin to mineralized dentin. By weight, 70% of the dentin matrix is mineralized, while the organic phase accounts for 20% and water constitutes the remaining 10%. Type I collagen is the primary component (>85%) of the organic portion of dentin. The non-collagenous part of the organic matrix is composed of various proteins, with dentin phosphoprotein predominating, accounting for about 50% of the non-collagenous part. Dentin defects are broadly classified into two major types: dentinogenesis imperfectas (DIs, types I–III) and dentin dysplasias (DDs, types I and II). To date, mutations in DSPP have been found to underlie the dentin disorders DI types II and III and DD type II. With the elucidation of the underlying genetic mechanisms has come the realization that the clinical characteristics associated with DSPP mutations appear to represent a continuum of phenotypes. Thus, these disorders should likely be called DSPP-associated dentin defects, with DD type II representing the mild end of the phenotypic spectrum and DI type III representing the severe end.


Cells Tissues Organs | 2009

Human and Mouse Enamel Phenotypes Resulting from Mutation or Altered Expression of AMEL, ENAM, MMP20 and KLK4

J. Timothy Wright; Thomas C. Hart; P. Suzanne Hart; Darrin Simmons; Cynthia Suggs; Bill Daley; Jim Simmer; J.C.-C. Hu; John D. Bartlett; Yong Li; Zhi An Yuan; W. Kim Seow; Carolyn W. Gibson

Amelogenesis imperfecta (AI) is caused by AMEL, ENAM, MMP20 and KLK4 gene mutations. Mice lacking expression of the AmelX, Enam and Mmp20 genes have been generated. These mouse models provide tools for understanding enamel formation and AI pathogenesis. This study describes the AI phenotypes and relates them to their mouse model counterparts. Human AI phenotypes were determined in a clinical population of AI families and published cases. Human and murine teeth were evaluated using light and electron microscopy. A total of 463 individuals from 54 families were evaluated and mutations in the AMEL, ENAM and KLK4 genes were identified. The majority of human mutations for genes coding enamel nonproteinase proteins (AMEL and ENAM) resulted in variable hypoplasia ranging from local pitting to a marked, generalized enamel thinning. Specific AMEL mutations were associated with abnormal mineralization and maturation defects. Amel and Enam null murine models displayed marked enamel hypoplasia and a complete loss of prism structure. Human mutations in genes coding for the enamel proteinases (MMP20 and KLK4) cause variable degrees of hypomineralization. The murine Mmp20 null mouse exhibits both hypoplastic and hypomineralized defects. The currently available Amel and Enam mouse models for AI exhibit enamel phenotypes (hypoplastic) that are generally similar to those seen in humans. Mmp20 null mice have a greater degree of hypoplasia than humans with MMP20 mutations. Mice lacking expression of the currently known genes associated with the human AI conditions provide useful models for understanding the pathogenesis of these conditions.


Journal of Biological Chemistry | 2005

Proteolysis of Macrophage Inflammatory Protein-1α Isoforms LD78β and LD78α by Neutrophil-derived Serine Proteases

Ok Hee Ryu; Sun Jin Choi; Erhan Firatli; Sung Won Choi; P. Suzanne Hart; Rong-Fong Shen; Guanghui Wang; Wells W. Wu; Thomas C. Hart

Macrophage inflammatory protein-1α (MIP-1α) is a chemokine that leads to leukocyte recruitment and activation at sites of infection. Controlling chemokine activity at sites of infection is important, since excess accumulation of leukocytes may contribute to localized tissue damage. Neutrophil-derived serine proteases modulate the bioactivity of chemokine and cytokine networks through proteolytic cleavage. Because MIP-1α is temporally expressed with neutrophils at sites of infection, we examined proteolysis of MIP-1α in vitro by the neutrophil-derived serine proteases: cathepsin G, elastase, and proteinase 3. Recombinant human MIP-1α isoforms LD78β and LD78α were expressed and purified, and the protease cleavage sites were analyzed by mass spectrometry and peptide sequencing. Chemotactic activities of parent and cleavage molecules were also compared. Both LD78β and LD78α were cleaved by neutrophil lysates at Thr16-Ser17, Phe24-Ile25, Tyr28-Phe29, and Thr31-Ser32. This degradation was inhibited by serine protease inhibitors phenylmethylsulfonyl fluoride and 4-(2-aminoethyl)-benzenesulfonyl fluoride. Incubation of the substrates with individual proteases revealed that cathepsin G preferentially cleaved at Phe24-Ile25 and Tyr28-Phe29, whereas elastase and proteinase 3 cleaved at Thr16-Ser17 and Thr31-Ser32. Proteolysis of LD78β resulted in loss of chemotactic activity. The role of these proteases in LD78β and LD78α degradation was confirmed by incubation with neutrophil lysates from Papillon-Lefèvre syndrome patients, demonstrating that the cell lysates containing inactivated serine proteases could not degrade LD78β and LD78α. These findings suggest that severe periodontal tissue destruction in Papillon-Lefèvre syndrome may be related to excess accumulation of LD78β and LD78α and dysregulation of the microbial-induced inflammatory response in the periodontium.


European Journal of Human Genetics | 2009

The PDGF-C regulatory region SNP rs28999109 decreases promoter transcriptional activity and is associated with CL/P

Sun J. Choi; Mary L. Marazita; P. Suzanne Hart; Pawel Sulima; L. Leigh Field; Toby McHenry; Manika Govil; Margaret E. Cooper; Ariadne Letra; Renato Menezes; Somnya Narayanan; Maria Adela Mansilla; José Mauro Granjeiro; Alexandre R. Vieira; Andrew C. Lidral; Jeffrey C. Murray; Thomas C. Hart

Human linkage and association studies suggest a gene(s) for nonsyndromic cleft lip with or without cleft palate (CL/P) on chromosome 4q31–q32 at or near the platelet-derived growth factor-C (PDGF-C) locus. The mouse Pdgfc−/− knockout shows that PDGF-C is essential for palatogenesis. To evaluate the role of PDGF-C in human clefting, we performed sequence analysis and SNP genotyping using 1048 multiplex CL/P families and 1000 case–control samples from multiple geographic origins. No coding region mutations were identified, but a novel −986 C>T SNP (rs28999109) was significantly associated with CL/P (P=0.01) in cases from Chinese families yielding evidence of linkage to 4q31–q32. Significant or near-significant association was also seen for this and several other PDGF-C SNPs in families from the United States, Spain, India, Turkey, China, and Colombia, whereas no association was seen in families from the Philippines, and Guatemala, and case–controls from Brazil. The −986T allele abolished six overlapping potential transcription regulatory motifs. Transfection assays of PDGF-C promoter reporter constructs show that the −986T allele is associated with a significant decrease (up to 80%) of PDGF-C gene promoter activity. This functional polymorphism acting on a susceptible genetic background may represent a component of human CL/P etiology.


Journal of Biological Chemistry | 2005

Proteolysis of MIP-1α isoforms LD78β and LD78α by neutrophil-derived serine proteases

Ok Hee Ryu; Sun Jin Choi; Erhan Firatli; Sung Won Choi; P. Suzanne Hart; Rong-Fong Shen; Guanghui Wang; Wells W. Wu; Thomas C. Hart

Macrophage inflammatory protein-1α (MIP-1α) is a chemokine that leads to leukocyte recruitment and activation at sites of infection. Controlling chemokine activity at sites of infection is important, since excess accumulation of leukocytes may contribute to localized tissue damage. Neutrophil-derived serine proteases modulate the bioactivity of chemokine and cytokine networks through proteolytic cleavage. Because MIP-1α is temporally expressed with neutrophils at sites of infection, we examined proteolysis of MIP-1α in vitro by the neutrophil-derived serine proteases: cathepsin G, elastase, and proteinase 3. Recombinant human MIP-1α isoforms LD78β and LD78α were expressed and purified, and the protease cleavage sites were analyzed by mass spectrometry and peptide sequencing. Chemotactic activities of parent and cleavage molecules were also compared. Both LD78β and LD78α were cleaved by neutrophil lysates at Thr16-Ser17, Phe24-Ile25, Tyr28-Phe29, and Thr31-Ser32. This degradation was inhibited by serine protease inhibitors phenylmethylsulfonyl fluoride and 4-(2-aminoethyl)-benzenesulfonyl fluoride. Incubation of the substrates with individual proteases revealed that cathepsin G preferentially cleaved at Phe24-Ile25 and Tyr28-Phe29, whereas elastase and proteinase 3 cleaved at Thr16-Ser17 and Thr31-Ser32. Proteolysis of LD78β resulted in loss of chemotactic activity. The role of these proteases in LD78β and LD78α degradation was confirmed by incubation with neutrophil lysates from Papillon-Lefèvre syndrome patients, demonstrating that the cell lysates containing inactivated serine proteases could not degrade LD78β and LD78α. These findings suggest that severe periodontal tissue destruction in Papillon-Lefèvre syndrome may be related to excess accumulation of LD78β and LD78α and dysregulation of the microbial-induced inflammatory response in the periodontium.

Collaboration


Dive into the P. Suzanne Hart's collaboration.

Top Co-Authors

Avatar

Thomas C. Hart

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

J. Timothy Wright

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ok Hee Ryu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sun Jin Choi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sung Won Choi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wells W. Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Guanghui Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge