Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. T. Dalla is active.

Publication


Featured researches published by P. T. Dalla.


Proceedings of SPIE | 2015

The effect of CNTs reinforcement on thermal and electrical properties of cement-based materials

D. A. Exarchos; P. T. Dalla; I. K. Tragazikis; Theodore E. Matikas

This research aims to investigate the influence of the nano-reinforcement on the thermal properties of cement mortar. Nano-modified cement mortar with carbon nanotubes (CNTs) leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The assessment of the thermal behavior was evaluated using IR Thermography. Two different thermographic techniques are used to monitor the influence of the nano-reinforcement. To eliminate any extrinsic effects (e.g. humidity) the specimens were dried in an oven before testing. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. This study indicate that the CNTs nano-reinforcement enhance the thermal and electrical properties and demonstrate them useful as sensors in a wide variety of applications.


Advances in Materials Science and Engineering | 2018

Ni-Ti Shape Memory Alloy Coatings for Structural Applications: Optimization of HVOF Spraying Parameters

Carmen De Crescenzo; Despina Karatza; D. Musmarra; Simeone Chianese; Theocharis Baxevanis; P. T. Dalla; D. A. Exarchos; Konstantinos G. Dassios; Theodore E. Matikas

This work aims at contributing to the development of a revolutionary technology based on shape memory alloy (SMA) coatings deposited on-site to large-scale metallic structural elements, which operate in extreme environmental conditions, such as steel bridges and buildings. The proposed technology will contribute to improve the integrity of metallic civil structures, to alter and control their mechanical properties by external stimuli, to contribute to the stiffness and rigidity of an elastic metallic structure, to safely withstand the expected loading conditions, and to provide corrosion protection. To prove the feasibility of the concept, investigations were carried out by depositing commercial NiTinol Ni50.8Ti (at.%) powder, onto stainless steel substrates by using high-velocity oxygen-fuel thermal spray technology. While the NiTinol has been known since decades, this intermetallic alloy, as well as no other alloy, was ever used as the SMA-coating material. Due to the influence of dynamics of spraying and the impact energy of the powder particles on the properties of thermally sprayed coatings, the effects of the main spray parameters, namely, spray distance, fuel-to-oxygen feed rate ratio, and coating thickness, on the quality and properties of the coating, in terms of hardness, adhesion, roughness, and microstructure, were investigated.


Proceedings of SPIE | 2015

The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

P. T. Dalla; P. Alafogianni; I. K. Tragazikis; D. A. Exarchos; Konstantinos G. Dassios; N.-M. Barkoula; Theodore E. Matikas

Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.


Smart Materials and Nondestructive Evaluation for Energy Systems IV | 2018

Towards miniaturization of electronics by developing and characterizing hyperfine solder powders used in printed circuit boards

P. T. Dalla; Dimitrios Tzetzis; Alexandros E. Karantzalis; Dionysios Bochtis; Theodore E. Matikas; D. A. Exarchos

Today’s electronics industry, due its continues growth and increasing demand for devices such as cell phones, satellite navigation systems, health devices, etc., faces important challenges related to the vast quantity of raw materials needed for sustainability and the quantity of waste generated from electronics equipment. To sustain its growth, the electronics industry needs innovations, such as the miniaturization of printed circuit boards (PCB) for increasing components density. Consequent development of miniaturized electronics design plays, therefore, a key role for the reduction of energy consumption and raw materials sustainable use. A factor, however, that currently limits this endeavor is the availability of hyperfine pitch solder powder pastes. The present work focuses on the development of novel, low cost, type 8 and 9 solder pastes with hyperfine solder particles (with size distribution of 1-10 μm) aiming at printing PCBs with increased component density. The solder joint quality was characterized using nondestructive techniques after manufacturing at different reflow parameters. Infrared thermography and white light interference microscopy provided information on internal defects such as presence of micro-voids, as well as on the topography of geometrical variations of solderbals, solder errors, and warpage of components, which are related to the thermal history of the component during reflow.


Smart Materials and Nondestructive Evaluation for Energy Systems IV | 2018

Characterization of Ni-P-SiC protective coating nanocomposites produced by electrodeposition and thermal spraying via infrared thermography and scanning acoustic microscopy

D. A. Exarchos; P. T. Dalla; Theodore E. Matikas; Dimitrios Tzetzis; Alexandros E. Karantzalis; Dionysios Bochtis

This work focuses on the development of novel nano-reinforced composite protective coatings for a wide range of applications, such as aerospace, automotive, energy and cutting tools industries. In the present work, silicon carbide (SiC) nanoparticles of 100nm and purity of 99% were used to form nickel-high phosphorus matrix composite (Ni–P– SiC) coatings on steel plates, which were prepared by direct current electrodeposition with duty cycle values of 50% and 80%, while the frequency of the imposed pulses was varied between 0.1Hz and 100Hz. Nickel sulphate served as the primary Ni source, while nickel chloride was added to improve anode corrosion, solution conductivity, and uniformity of the coating thickness distribution. Phosphorous acid acted as the P source in the solution and H3BO3 was added as buffering agent. Sodium dodecyl sulphate has been used as a wetting agent, and saccharin as a stress reducing additive. XRD characterization showed that the structure of NiP composite coatings as deposited were amorphous, irrespective of the presence of SiC. After heat treatment at 400°C for one hour, the amorphous phase was crystallized at steady phases of Ni and Ni3P. The morphology and structure as well as the elastic property of the coatings with and without the SiC nanoparticles were assessed using infrared thermography and scanning acoustic microscopy.


Materials | 2018

Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications

D. A. Exarchos; P. T. Dalla; I. K. Tragazikis; Konstantinos G. Dassios; Nikolaos Zafeiropoulos; Maria Karabela; Carmen De Crescenzo; Despina Karatza; D. Musmarra; Simeone Chianese; Theodore E. Matikas

This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.


Proceedings of SPIE | 2017

Cement-based materials with graphene nanophase

P. T. Dalla; I. K. Tragazikis; D. A. Exarchos; Konstantinos G. Dassios; Theodore E. Matikas

Cement matrix composites with a conductive nano-reinforcement phase, lead to the development of innovative products. A matrix with carbon based nano-inclusions (graphene, carbon nanotubes, carbon nanofibers, carbon black) obtains multi-functional properties like enhanced mechanical, electrical, elastic and thermal properties and, therefore, the advantage of self-sensing in case of an inner defect. This research aims to characterize the nano-modified cement mortars with different concentrations of graphene nanophase. The results will be compared with data obtained from nanomaterials containing multi-walled carbon nanotubes. Comprehensive characteristics of these cement-based nanocomposites have been determined using destructive and nondestructive laboratory techniques. Flexural and compressive strength were measured. During four point bending tests, acoustic emission monitoring allowed for realtime identification of the damage process in the material. The electrical surface resistivity of graphene-reinforced cement mortars was measured by applying a known DC voltage, and compared to the electrical resistivity of nano-modified mortars with carbon nanotubes.


Key Engineering Materials | 2017

Influence of Silane Treatment of All-Ceramic Surfaces (e-Max) on the Cementation with Tooth Dentine

Evangelos Gkogkas; P. T. Dalla; Theodore E. Matikas; Simeon Agathopoulos

The influence of the treatment of the surface of IPS Empress II (e-max) glass-ceramic dental material with different silane agents on the surface roughness of this glass-ceramic was evaluated. IPS Empress II (e-max) cores were treated with five different commercial silane agents used in dentistry nowadays, for several periods of time and were finally air dried. After silanization, the surfaces of the glass-ceramic cores were observed with a light profilometer, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The values of surface roughness (Ra) were also measured with the light profilometer. The results showed an important effect of silane treatment applied for different periods of time, especially for prolonged treatment for 24 hours, on the surface roughness of IPS Empress II (e-max). These results can have an important impact on the deep understanding of the cementation protocols applied in modern dentistry.


Proceedings of SPIE | 2016

Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

I. K. Tragazikis; D. A. Exarchos; P. T. Dalla; Theodore E. Matikas

This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.


Proceedings of SPIE | 2016

The effect of corrosion on the fatigue life of aluminum alloys

P. T. Dalla; I. K. Tragazikis; D. A. Exarchos; Theodore E. Matikas

The corrosion behavior of metallic structures is an important factor of material performance. In case of aluminum matrix composites corrosion occurs via electrochemical reactions at the interface between the metallic matrix and the reinforcement. The corrosion rate is determined by equilibrium between two opposing electrochemical reactions, the anodic and the cathodic. When these two reactions are in equilibrium, the flow of electrons from each reaction type is balanced, and no net electron flow occurs. In the present study, aluminum alloy tensile-shape samples are immersed in NaCl solution with an objective to study the effect of the controlled pitting corrosion in a specific area. The rest of the material is completely sealed. In order to investigate the effect of pitting corrosion on the material performance, the specimens were subjected to cyclic loading. The effect of corrosion on the fatigue life was assessed using two complimentary nondestructive methods, infrared thermography and acoustic emission.

Collaboration


Dive into the P. T. Dalla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Musmarra

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Despina Karatza

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Simeone Chianese

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

A. Paipetis

University of Ioannina

View shared research outputs
Researchain Logo
Decentralizing Knowledge