P. V. Sundareshwar
South Dakota School of Mines and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. V. Sundareshwar.
Ecology | 2002
James T. Morris; P. V. Sundareshwar; Christopher T. Nietch; Björn Kjerfve; D. R. Cahoon
Salt marsh ecosystems are maintained by the dominant macrophytes that regulate the elevation of their habitat within a narrow portion of the intertidal zone by accumulating organic matter and trapping inorganic sediment. The long-term stability of these ecosystems is explained by interactions among sea level, land elevation, primary production, and sediment accretion that regulate the elevation of the sediment surface toward an equilibrium with mean sea level. We show here in a salt marsh that this equilibrium is adjusted upward by increased production of the salt marsh macrophyte Spartina alterniflora and downward by an increasing rate of relative sea-level rise (RSLR). Adjustments in marsh surface elevation are slow in comparison to interannual anomalies and long-period cycles of sea level, and this lag in sediment elevation results in significant variation in annual primary productivity. We describe a theoretical model that predicts that the system will be stable against changes in relative mean sea level when surface elevation is greater than what is optimal for primary production. When surface elevation is less than optimal, the system will be unstable. The model predicts that there is an optimal rate of RSLR at which the equilibrium elevation and depth of tidal flooding will be optimal for plant growth. However, the optimal rate of RSLR also represents an upper limit because at higher rates of RSLR the plant community cannot sustain an elevation that is within its range of tol- erance. For estuaries with high sediment loading, such as those on the southeast coast of the United States, the limiting rate of RSLR was predicted to be at most 1.2 cm/yr, which is 3.5 times greater than the current, long-term rate of RSLR.
Limnology and Oceanography | 1999
P. V. Sundareshwar; James T. Morris
Limnology and Oceanography | 2001
P. V. Sundareshwar; James T. Morris; Perry J. Pellechia; H. J. Cohen; D. E. Porter; B. C. Jones
Geophysical Research Letters | 2011
P. V. Sundareshwar; S. Upadhayay; M. Abessa; S. Honomichl; Bruce W. Berdanier; Sarah A. Spaulding; C. Sandvik; A. Trennepohl
Science | 2007
P. V. Sundareshwar; R. Murtugudde; G. Srinivasan; Sukhvir Singh; K. J. Ramesh; R. Ramesh; S. B. Verma; D. Agarwal; D. Baldocchi; C. K. Baru; Kushal Kumar Baruah; G. R. Chowdhury; V. K. Dadhwal; C. B. S. Dutt; J. Fuentes; Prabhat K. Gupta; W. W. Hargrove; M. Howard; C. S. Jha; S. Lal; William K. Michener; Abhijit Mitra; James T. Morris; R. R. Myneni; Manish Naja; R. Nemani; R. Purvaja; S. Raha; S. K. Santhana Vanan; Mukesh Sharma
Geophysical Research Letters | 2009
P. V. Sundareshwar; Curtis J. Richardson; Robert A. Gleason; Perry J. Pellechia; S. Honomichl
Archive | 2008
Curtis J. Richardson; James W. Pahl; Jan Vymazal; Panchabi Vaithiyanathan; Robert G. Qualls; P. V. Sundareshwar; M. Lee Barber; Jeffrey L. Johnson
Geophysical Research Letters | 2011
P. V. Sundareshwar; S. Upadhayay; M. Abessa; S. Honomichl; Bruce W. Berdanier; Sarah A. Spaulding; C. Sandvik; A. Trennepohl
Archive | 2010
P. V. Sundareshwar; S. Upadhyay; M. B. Abessa; S. Honomichl; Bruce W. Berdanier; S. Spaulding; C. Sandvik; A. Trennepohl
Geophysical Research Letters | 2009
P. V. Sundareshwar; Curtis J. Richardson; Robert A. Gleason; Perry J. Pellechia; S. Honomichl