P. Varga
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Varga.
Surface Science Reports | 1997
A. Arnau; F. Aumayr; P. M. Echenique; M. Grether; W. Heiland; J Limburg; R Morgenstern; P Roncin; R Schuch; N. Stolterfoht; P. Varga; Tjm Zouros; Heinrich Winter
Abstract The present report deals with the main aspects of the interaction of slow (impact velocity typically below 1 a.u.) multicharged ions (MCI) with atomically clean solid surfaces of metals, semiconductors and insulators. It is based to a large extent on the results obtained by the authors and their affiliates within the Human Capital and Mobility Network of the European Union on “Interaction of Slow Highly Charged Ions with Solid Surfaces”, which has been carried out during the last three years. After briefly reviewing the pertinent historical developments, the experimental and theoretical techniques applied nowadays in the field of MCI-surface interaction studies are explained in detail, discussing especially the transient formation and relaxation of “hollow atoms” formed in such collisions. Further on, the status of the field is exemplified by numerous results from recent studies on MCI-induced emission of slow and fast electrons (yields and energy distributions), projectile soft X-ray spectroscopy, charge-changing and energy loss of scattered and surface-channelled projectiles, MCI-induced sputtering and secondary ion emission, and coincidence measurements involving different signatures from the above processes. The presented theoretical and experimental work has greatly contributed to an improved understanding of the strongly inter-related electronic transitions taking place for MCI above, at and below a solid surface.
Surface Science | 1994
C. Nagl; O. Haller; E. Platzgummer; Michael Schmid; P. Varga
Abstract In spite of the immiscibility of Pb in bulk Cu, atomically resolved scanning tunneling microscopy reveals surface alloy formation of Pb deposited on Cu ( 111 ), even at 300 K. Due to kinetic limitations at room temperature, the incorporation of Pb is restricted to advance from step edges, while after annealing to 470 K or higher, embedded Pb atoms are found to be randomly distributed over terraces. At low tunneling voltages, standing waves of surface-state electrons scattered by embedded Pb atoms could be observed. The maximum packing density of the surface alloy is about 40% ( = 0.4 ML) of a close-packed Pb overlayer. Thus, deposition above 0.4 ML and subsequent annealing results in hexagonal close-packed Pb regions, whereas on the non-annealed surface hexagonal close-packed Pb islands are already found at 0.2 ML. Eventually, at 1 ML the surface alloy is entirely replaced by a Pb overlayer.
Metabolism-clinical and Experimental | 2011
Janina M. Patsch; Florian W. Kiefer; P. Varga; Pamela Pail; Martina Rauner; Daniela Stupphann; Heinrich Resch; Doris Moser; Philippe K. Zysset; Thomas M. Stulnig; Peter Pietschmann
Although obesity traditionally has been considered a condition of low risk for osteoporosis, this classic view has recently been questioned. The aim of this study was to assess bone microarchitecture and turnover in a mouse model of high-fat diet-induced obesity. Seven-week-old male C57BL/6J mice (n = 18) were randomized into 3 diet groups. One third (n = 6) received a low-fat diet for 24 weeks, one third was kept on an extended high-fat diet (eHF), and the remaining was switched from low-fat to high-fat chow 3 weeks before sacrifice (sHF). Serum levels of insulin, leptin, adiponectin, osteocalcin, and cross-linked telopeptides of type I collagen (CTX) were measured. In addition, bone microarchitecture was analyzed by micro-computed tomography; and lumbar spine bone density was assessed by dual-energy x-ray absorptiometry. The CTX, body weight, insulin, and leptin were significantly elevated in obese animals (sHF: +48%, +24%, +265%, and +102%; eHF: +43%, +52%, +761%, and +292%). The CTX, body weight, insulin, and leptin showed a negative correlation with bone density and bone volume. Interestingly, short-term high-fat chow caused similar bone loss as extended high-fat feeding. Bone volume was decreased by 12% in sHF and 19% in eHF. Bone mineral density was 25% (sHF) and 27% (eHF) lower when compared with control mice on low-fat diet. As assessed by the structure model index, bone microarchitecture changed from plate- to rod-like appearance upon high-fat challenge. Trabecular and cortical thickness remained unaffected. Short-term and extended high-fat diet-induced obesity caused significant bone loss in male C57BL/6J mice mainly because of resorptive changes in trabecular architecture.
Journal of Bone and Mineral Research | 2009
Christian Graeff; Yan Chevalier; Mathieu Charlebois; P. Varga; Dieter H. Pahr; Thomas Nickelsen; Michael M. Morlock; Claus C. Glüer; Philippe K. Zysset
Monitoring of osteoporosis therapy based solely on DXA is insufficient to assess antifracture efficacy. Estimating bone strength as a variable closely linked to fracture risk is therefore of importance. Finite element (FE) analysis–based strength measures were used to monitor a teriparatide therapy and the associated effects on whole bone and local fracture risk. In 44 postmenopausal women with established osteoporosis participating in the EUROFORS study, FE models based on high‐resolution CT (HRCT) of T12 were evaluated after 0, 6, 12, and 24 mo of teriparatide treatment (20 μg/d). FE‐based strength and stiffness calculations for three different load cases (compression, bending, and combined compression and bending) were compared with volumetric BMD (vBMD) and apparent bone volume fraction (app. BV/TV), as well as DXA‐based areal BMD of the lumbar spine. Local damage of the bone tissue was also modeled. Highly significant improvements in all analyzed variables as early as 6 mo after starting teriparatide were found. After 24 mo, bone strength in compression was increased by 28.1 ± 4.7% (SE), in bending by 28.3 ± 4.9%, whereas app. BV/TV was increased by 54.7 ± 8.8%, vBMD by 19.1 ± 4.0%, and areal BMD of L1–L4 by 10.2 ± 1.2%. When comparing standardized increases, FE changes were significantly larger than those of densitometry and not significantly different from app. BV/TV. The size of regions at high risk for local failure was significantly reduced under teriparatide treatment. Treatment with teriparatide leads to bone strength increases for different loading conditions of close to 30%. FE is a suitable tool for monitoring bone anabolic treatment in groups or individual patients and offers additional information about local failure modes. FE variables showed a higher standardized response to changes than BMD measurements, but further studies are needed to show that the higher response represents a more accurate estimate of treatment‐induced fracture risk reduction.
Osteoporosis International | 2012
E. Dall’Ara; Dieter H. Pahr; P. Varga; Franz Kainberger; Philippe K. Zysset
SummaryWhile dual energy X-ray absorptiometry (DXA) is considered the gold standard to evaluate fracture risk in vivo, in the present study, the quantitative computed tomography (QCT)-based finite element modeling has been found to provide a quantitative and significantly improved prediction of vertebral strength in vitro. This technique might be used in vivo considering however the much larger doses of radiation needed for QCT.IntroductionVertebral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. QCT-based finite element (FE) modeling is an engineering method to predict vertebral strength. The aim of this study was to compare the ability of FE and clinical diagnostic tools to predict vertebral strength in vitro using an improved testing protocol.MethodsThirty-seven vertebral sections were scanned with QCT and high resolution peripheral QCT (HR-pQCT). Bone mineral content (BMC), total BMD (tBMD), areal BMD from lateral (aBMD-lat), and anterior-posterior (aBMD-ap) projections were evaluated for both resolutions. Wedge-shaped fractures were then induced in each specimen with a novel testing setup. Nonlinear homogenized FE models (hFE) and linear micro-FE (μFE) were generated from QCT and HR-pQCT images, respectively. For experiments and models, both structural properties (stiffness, ultimate load) and material properties (apparent modulus and strength) were computed and compared.ResultsBoth hFE and μFE models predicted material properties better than structural ones and predicted strength significantly better than aBMD computed from QCT and HR-pQCT (hFE: R² = 0.79, μFE: R² = 0.88, aBMD-ap: R² = 0.48−0.47, aBMD-lat: R² = 0.41−0.43). Moreover, the hFE provided reasonable quantitative estimations of the experimental mechanical properties without fitting the model parameters.ConclusionsThe QCT-based hFE method provides a quantitative and significantly improved prediction of vertebral strength in vitro when compared to simulated DXA. This superior predictive power needs to be verified for loading conditions that simulate even more the in vivo case for human vertebrae.
Surface Science | 2002
Sh. K. Shaikhutdinov; M. Heemeier; Jens Hoffmann; Ingo Meusel; B. Richter; Marcus Bäumer; H. Kuhlenbeck; Jörg Libuda; Hans-Joachim Freund; R.J Oldman; S.D Jackson; C. Konvicka; Michael Schmid; P. Varga
The interaction of oxygen with Pd particles, vapor deposited onto a thin alumina film grown on a NiAl(1 1 0) substrate, was studied by STM, AES, LEED, XPS, TPD and molecular beam techniques. The results show that O2 exposure at 400–500 K strongly influences the oxide support. We suggest that the oxygen atoms formed by dissociation on the Pd surface can diffuse through the alumina film and react with the NiAl substrate underneath the Pd particles, thus increasing the thickness of the oxide film. The surface oxygen inhibits hydrogen adsorption, and readily reacts with CO at 300–500 K. For large and crystalline Pd particles, the system exhibits adsorption–desorption properties which are very similar to those of the Pd(1 1 1) single crystal surface. The molecular beam and TPD experiments reveal that, at low coverage, CO adsorbs slightly stronger on the smaller Pd particles, with an adsorption energy difference of � 5–7 kJ mol � 1 for 1 and 3–5 nm Pd particles studied. 2002 Elsevier Science B.V. All rights reserved.
Surface Science | 1999
Wilhelm Hebenstreit; Josef Redinger; Z. Horozova; Michael Schmid; R. Podloucky; P. Varga
Abstract Atomically resolved scanning tunneling microscopy (STM) of ultra-thin NaCl films on Al(111) and Al(100) demonstrates that only one atomic species of NaCl is imaged as a protrusion. By comparison of the constant current STM images with ab initio calculations of the local density of states by means of the full-potential linearized augmented plane wave method, the protrusions could be attributed to the anion Cl – . The calculations shows that a higher density of occupied states at the Cl-sites than for the Na-sites around the Fermi level causes the STM contrast between Cl and Na. With increasing number of NaCl layers the density of states in the band gap is reduced and the apparent height of additional NaCl layers decreases. The maximum film thickness allowing successful imaging by STM was found to be three layers.
Bone | 2011
E.P. Paschalis; Tatakis Dn; S. Robins; Peter Fratzl; I. Manjubala; R. Zoehrer; Sonja Gamsjaeger; B. Buchinger; A. Roschger; Roger Phipps; Adele L. Boskey; Enrico Dall'Ara; P. Varga; Philippe K. Zysset; Klaus Klaushofer; Paul Roschger
In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2–L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p < 0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence of β-APN, despite a similar mineral content. In conclusion the results emphasize the pivotal role of collagen cross-links in the determination of bone quality and mechanical integrity. However, in this rat animal model of lathyrism, the coupled alterations of tissue structural properties make it difficult to weigh the contribution of the anatomically confined material changes to the overall mechanical performance of whole bone. Interestingly, the collagen cross-link ratio in bone forming areas had the same profile as seen in actively bone forming trabecular surfaces in human iliac crest biopsies of osteoporotic patients.
Surface Science | 1996
P.T. Wouda; Bernard E. Nieuwenhuys; Michael Schmid; P. Varga
Scanning tunnelling microscopy on PtRh(100) (molar bulk composition 1 : 1) has revealed the possibility of direct determination of the surface of this system. During measurements at low tunnelling resistance (<500 kЩ), the Pt and Rh atoms appear with a clearly observable apparent height difference of more than 20 pm. No long range ordering has been found. Variation of the sample preparation method and comparison of STM and Auger electron spectroscopy measurements led to the conclusions that there is a preferential surface segregation of platinum, that rhodium atoms are the ones with the highest apparent height, and that there is limited tendency of clustering on the surface. Furthermore, it was found that platinum atoms preferentially populate the step edges on this crystal surface.
bonekey Reports | 2013
Philippe K. Zysset; Enrico Dall'Ara; P. Varga; Dieter H. Pahr
Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.