P. Vasantha Rao
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Vasantha Rao.
Biochimica et Biophysica Acta | 1995
P. Vasantha Rao; Qing ling Huang; Joseph Horwitz; J. Samuel Zigler
Abstract The ocular lens is a transparent organ comprised of a highly concentrated and highly ordered matrix of structural proteins, called crystallins, which are probably the longest lived proteins of the body. Lens transparency is dependent upon maintenance of the short range order of the crystallin matrix. This transparency must be maintained for decades in the absence of normal protein synthesis or repair capacity. We present evidence here that α-crystallin, one of the major lens proteins, plays a central role in vivo in stabilizing the other crystallins and preventing uncontrolled aggregation of these progressively modified and aging molecules. α-Crystallin has previously been shown to suppress non-specific aggregation of denaturing proteins in simple binary systems through a chaperone-like activity. Our studies using soluble homogenates of monkey lenses demonstrate a strong resistance to heat induced non-specific aggregation when the complete complement of crystallins is present; in contrast, if α-crystallin is selectively removed prior to heating, the remaining crystallins undergo extensive non-specific aggregation as indicated by light scattering. When α-crystallin is present it complexes with denaturing proteins forming a soluble heavy molecular weight (HMW) fraction but no insolubilization is observed, while when α-crystallin is absent there is heavy insolubilization and no HMW formed. When intact monkey lenses were heated it could be demonstrated that soluble HMW was generated. Similar HMW protein appears in vivo in the human lens as a function of age. These findings suggest that the soluble HMW protein present in the human lens is the product of the chaperone-like function of α-crystallin and that under physiological conditions α-crystallin inhibits the uncontrolled aggregation of damaged proteins, thereby preventing the formation of light scattering centers and opacification of the lens.
Experimental Eye Research | 2003
Rahul N Khurana; P. Deng; David L. Epstein; P. Vasantha Rao
The elevated intraocular pressure that is commonly associated with glaucoma is believed to arise due to impairment of trabecular meshwork (TM) function. Although the TM and Schlemms canal (SC) comprise the major route for aqueous humor outflow, little is known about the potential signaling mechanisms involved in the regulation of aqueous outflow. Based on knowledge regarding the role of protein kinase C (PKC) in vascular biology, we sought to understand the contribution of the PKC pathway towards outflow function by studying the modulation of contractile and morphological characteristics of TM and SC cells. We investigated the involvement of PKC in regulation of myosin light chain (MLC) phosphorylation, formation of actin stress fibers and integrin-ECM adhesions (focal adhesions) in human TM and SC cells and correlated these changes with aqueous outflow facility measured in an enucleated porcine whole eye perfusion model. Expression and distribution of PKC isoforms (alpha and epsilon ) in TM and SC cells and tissues was confirmed by Western blot and immunohistochemical analysis, respectively. Both, pharmacological activators (phorbol-12-myristate 13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and inhibitors (staurosporine and GF109203X) of PKC were found to induce changes in cell shape (retraction and rounding up) and cytoskeletal organization in human TM and SC cells. While PMA and PDBu produced an increase in formation of actin stress fibers and focal adhesions and in MLC phosphorylation, PKC inhibitors were observed to induce contrasting effects in these cells. Intriguingly, both PDBU and GF109203X caused increases in aqueous outflow facility in the perfusion model. The PKC inhibitor (GF109203X) increased outflow by 46% while the PKC activator (PDBu) only increased outflow by 27%. These results suggest that PKC might play an important role in modulation of aqueous outflow facility by regulating MLC phosphorylation and thereby, the morphological and cytoskeletal characteristics of TM and SC cells.
Archives of Biochemistry and Biophysics | 1991
Donita Garland; P. Vasantha Rao; Antonella Del Corso; Umberto Mura; J. Samuel Zigler
Camel (Camelus dromedarius) lenses contain a protein with an apparent subunit Mr 38,000 that constitutes approximately 8-13% of the total protein. The protein has been purified and has a native Mr 140,000 as determined by gel filtration. This is consistent with its being a tetramer. The protein reacts with antibodies raised against both guinea pig zeta-crystallin and peptides corresponding to amino acids 1-10 and 295-308, but not to antibodies raised against amino acids 320-328 of zeta-crystallin. Based on these criteria it is concluded that this protein, which is a major constituent of camel lens, is zeta-crystallin. This may be the first example of a protein (enzyme) being independently utilized as a crystallin in the lens of species from two mammalian orders.
Journal of Biological Chemistry | 1998
P. Vasantha Rao; Timothy A. Garrow; Faith John; Donita Garland; Norman S. Millian; J. Samuel Zigler
We describe herein the characterization of a major 45-kDa protein from the soluble βH-crystallin fraction of rhesus monkey (Macaca mulatta) lens. Based on partial peptide sequence, immunoreactivity, and enzymatic activity, this protein has been identified as betaine-homocysteineS-methyltransferase (BHMT: EC 2.1.1.5), an enzyme that catalyzes the methylation of homocysteine using either betaine or thetins as methyl donors. This protein was found to be expressed abundantly in the nuclear region of the monkey lens, reaching ∼10% of the total nuclear protein, but was barely detectable in the epithelium and cortex regions of the lens. Because the nucleus represents the early embryonic and fetal stages of lens development, we infer that BHMT expression in the lens of the eye is developmentally regulated. By virtue of its high abundance, BHMT can be considered an enzyme crystallin (ψ-crystallin). This is the first enzyme crystallin to be found in primate lenses.
Archives of Biochemistry and Biophysics | 1991
P. Vasantha Rao; J. Samuel Zigler
zeta-Crystallin, a major taxon-specific protein of the guinea pig lens, has been shown to be distantly related to the alcohol/polyol dehydrogenase family and to specifically bind NADPH. The capacity of zeta-crystallin to function catalytically was investigated in the present study. zeta-Crystallin exhibited an NADPH-dependent oxidoreductase activity with 2,6-dichlorophenolindophenol (DCIP). The NADPH:DCIP oxidoreductase activity of zeta-crystallin exhibits a linear response with increasing protein concentration, and saturation kinetics with NADPH and DCIP. This activity was abolished by heat inactivation and immunoadsorption of the protein. Dicumarol, Cibacron blue, manganese, and sulfhydryl reagents were inhibitory.
Developmental Dynamics | 2001
Rupalatha Maddala; You-Wei Peng; P. Vasantha Rao
This report describes the expression and distribution pattern of RhoB GTPase in the developing mouse lens. RhoB expression was confirmed by sequencing an reverse transcriptase‐polymerase chain reaction–generated DNA fragment of RhoB. Immunohistochemical analysis of RhoB revealed expression in the lens vesicle (both anterior and posterior vesicle) at embryonic day (E) 11.5, and in the epithelium and primary fibers of the E14.5 lens. Compared with the neonatal stage (day 1), where RhoB is detected in the entire lens (epithelium, primary, and secondary fibers), expression of this protein is restricted to the epithelial and outer cortical secondary fibers in postnatal lenses (from day 7 to day18). Interestingly, in E11.5 and E14.5 lenses, RhoB is localized predominantly in the lens, but not detectable in the retina, cornea, or other ocular tissues. RhoB expression appears to be down‐regulated in the postnatal lens with concomitant up‐regulation in the retina and cornea, compared with earlier stages of development (eyes of E11.5, E14.5, and neonatal mice). This study reveals the selective expression of RhoB in the lens during early eye development and suggests a potential role for this small GTPase in cytoskeletal reorganization associated with lens epithelial cell elongation and differentiation.
FEBS Letters | 1993
Hans Jörnvall; Bengt Persson; Garrett C. Du Bois; Gene C. Lavers; John Chen; Pedro Gonzalez; P. Vasantha Rao; J. Samuel Zigler
Species variability of the lens protein ζ‐crystallin was correlated with those of alcohol dehydrogenases of classes I and III and sorbitol dehydrogenase in the same protein family. The extent of overall variability, nature of residues conserved, and patterns of segment variability, all fall within the limits typical of the ‘variable’ group of medium‐chain alcohol dehydrogenases. This shows that ζ‐crystallin is subject to restrictions similar to those of classical liver alcohol dehydrogenase and therefore derived from a metabolically active enzyme like other enzyme crystalline. Special residues at the active site, however, differ substantially, including an apparent lack of a zinc‐binding site. This is compatible with altered functional properties and makes the spread within this medium‐chain dehydrogenase family resemble the wide spread within the short‐chain dehydrogenases. Schematic plotting is useful for illustrating the differences between ‘variable’ and ‘constant’ enzymes.
Investigative Ophthalmology & Visual Science | 2008
P. Vasantha Rao; Yuri K. Peterson; Toshihiro Inoue; Patrick J. Casey
PURPOSE To determine the effects of inhibition of protein geranylgeranyltransferase type I (GGTase-I), which isoprenylates so-called CaaX proteins, including the GTP-binding proteins such as Rho GTPases and the betagamma subunits of heterotrimeric G-proteins, on aqueous humor outflow and trabecular meshwork cytoskeletal integrity. METHODS A selective small molecular inhibitor of GGTase-I, GGTI-DU40, was tested in this study to investigate its effects on actin cytoskeletal integrity, cell adhesions, cell-cell junctions, myosin II phosphosphorylation, and membrane localization of GTP-binding proteins in trabecular meshwork (TM) cells, using immunofluorescence detection and immunoblotting analysis. The effects of GGTI-DU40 on aqueous humor outflow were determined using organ-cultured, perfused anterior segments of porcine eyes. RESULTS In the TM cell lysates, GGTI-DU40 was confirmed to inhibit GGTase-I activity in a dose-dependent manner. TM cells treated with GGTI-DU40 displayed dose-dependent changes in cell morphology and reversible decreases in actin stress fibers, focal adhesions, and adherens junctions. Myosin light chain phosphorylation was decreased significantly, and membrane localization of isoprenylated small GTPases and Gbetagamma was impaired in drug-treated TM cells. Aqueous outflow facility was increased significantly in eyes perfused with GGTI-DU40. CONCLUSIONS These data demonstrate that inhibition of geranylgeranyl isoprenylation of CaaX proteins in the aqueous outflow pathway increases aqueous humor outflow, possibly through altered cell adhesive interactions and actin cytoskeletal organization in cells of the outflow pathway. This study indicates that the GGTase-I enzyme is a promising molecular target for lowering increased ocular pressure in glaucoma patients.
Biochimica et Biophysica Acta | 1993
Santa J. Tumminia; P. Vasantha Rao; J. Samuel Zigler; Paul Russell
Xenobiotic regulatory elements have been identified for enzymes which ameliorate oxidative damage in cells. Zeta (zeta)-crystallin, a taxon-specific enzyme/crystallin shown to be a novel NADPH-dependent quinone reductase, is found in a number of tissues and cell types. This study shows that zeta-crystallin is present in mouse lens epithelium, as well as in the alpha TN4 mouse lens epithelial cell line. To determine whether zeta-crystallin is an inducible quinone reductase, cell cultures were exposed to the xenobiotics, 1,2-naphthoquinone and beta-naphthoflavone. Assays of cellular homogenates showed that quinone reductase activity was stimulated greater than 70% and 90%, respectively, over the control cells. This observed activity was sensitive to dicumarol, a potent inhibitor of quinone reductase activity. 1,2-Naphthoquinone- and beta-naphthoflavone-exposed cells were found to exhibit 1.47- and 1.68-fold increases, respectively, in zeta-crystallin protein concentration. A comparable increase in zeta-crystallin mRNA was indicative of an induction in zeta-crystallin expression in response to naphthalene challenge. Lens epithelial cells were also checked for DT-diaphorase, a well-known cellular protective enzyme which can catalyze the two-electron reduction of quinones. Slot blot analyses indicated that alpha TN4 cells exposed to 1,2-naphthoquinone and beta-naphthoflavone exhibited 2.71- and 6.81-fold increases in DT-diaphorase concentration when compared to the control cells. The data suggest that while DT-diaphorase is most likely responsible for the majority of the observed increase in quinone reductase activity, the zeta-crystallin gene also undergoes activation which is apparently mediated by a xenobiotic-responsive element.
Biochimica et Biophysica Acta | 1992
P. Vasantha Rao; J. Samuel Zigler
zeta-Crystallin, a major lens protein of certain mammalian species, has recently been characterized as a novel and active NADPH:quinone oxidoreductase. Here we report the purification of this protein from guinea pig liver by utilizing sequentially: ammonium sulphate precipitation, Blue Sepharose affinity, cation exchange and hydrophobic chromatography steps. This four-step isolation procedure yielded 118-fold purification and a specific activity of 6 U/mg protein when assayed in the presence of 9,10-phenanthrenequinone. Kinetic, immunological and physical properties of this protein have been found to be identical with those of guinea pig lens zeta-crystallin. Western blot analysis using antibodies raised against zeta-crystallin peptides demonstrated the presence of substantial amounts of this protein in human liver homogenates.