Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Zweifel is active.

Publication


Featured researches published by P. Zweifel.


Classical and Quantum Gravity | 2005

The LTP experiment on the LISA Pathfinder mission

S. Anza; M Armano; E. Balaguer; M. Benedetti; C. Boatella; P. Bosetti; D. Bortoluzzi; N. Brandt; Claus Braxmaier; Martin E. Caldwell; L. Carbone; A. Cavalleri; A. Ciccolella; I. Cristofolini; M. Cruise; M. Da Lio; Karsten Danzmann; D. Desiderio; R. Dolesi; N. Dunbar; Walter Fichter; C. Garcia; E. Garcia-Berro; A. F. Garcia Marin; R. Gerndt; Alberto Gianolio; Domenico Giardini; R. Gruenagel; A. Hammesfahr; Gerhard Heinzel

We report on the development of the LISA Technology Package (LTP) experiment that will fly onboard the LISA Pathfinder mission of the European Space Agency in 2008. We first summarize the science rationale of the experiment aimed at showing the operational feasibility of the so-called transverse–traceless coordinate frame within the accuracy needed for LISA. We then show briefly the basic features of the instrument and we finally discuss its projected sensitivity and the extrapolation of its results to LISA.


Classical and Quantum Gravity | 2009

LISA Pathfinder: the experiment and the route to LISA

M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; P. Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; A. M. Cruise; Karsten Danzmann; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; M. Freschi; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; M. Hewitson; D. Hollington; J. Hough; M. Hueller; D. Hoyland

LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.


Classical and Quantum Gravity | 2011

LISA Pathfinder: mission and status

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter

LISA Pathfinder, the second of the European Space Agencys Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun?Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500?000 km by 800?000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.


Classical and Quantum Gravity | 2012

The LISA Pathfinder Mission

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; M. Caleno; Priscilla Canizares; A. Cavalleri; M. Cesa; M. Chmeissani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; V. Ferrone; Walter Fichter

In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.


Classical and Quantum Gravity | 2009

Data analysis for the LISA Technology Package

M. Hewitson; M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; D. Hollington; J. Hough; M. Hueller; D. Hoyland; O. Jennrich; B. Johlander

The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.


Physical Review Letters | 2018

Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz

M. Armano; H. Audley; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; E. Castelli; A. Cavalleri; A. Cesarini; A. M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; G. Dixon; R. Dolesi; L. Ferraioli; V. Ferroni; Ewan Fitzsimons; M. Freschi; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; J. Grzymisch; I. Harrison; Gerhard Heinzel; M. Hewitson; D. Hollington; D. Hoyland

In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20u2009u2009μHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05)u2009u2009fmu2009s^{-2}/sqrt[Hz] above 2xa0mHz and (6±1)×10u2009u2009fmu2009s^{-2}/sqrt[Hz] at 20u2009u2009μHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.


Classical and Quantum Gravity | 2011

LISA Pathfinder data analysis

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; E. Fitzsimons

As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.


Physical Review Letters | 2017

Charge-induced force-noise on free-falling test masses: results from LISA Pathfinder

M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; Ewan Fitzsimons; R. Flatscher; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri

We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0u2009u2009fmu2009s^{-2}u2009Hz^{-1/2} across the 0.1-100xa0mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.


Classical and Quantum Gravity | 2016

Constraints on LISA Pathfinder's Self-Gravity: Design Requirements, Estimates and Testing Procedures

M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; M. de Deus Silva; D. Desiderio; E Piersanti; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; E. Fitzsimons; R. Flatscher; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert

LISA Pathfinder satellite has been launched on 3th December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. With its cutting-edge technology, the LTP will provide the ability to achieve unprecedented geodesic motion residual acceleration measurements down to the order of


Journal of Physics: Conference Series | 2015

A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System

M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; E. Fitzsimons; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; I. Harrison

3 times 10^{-14},mathrm{m/s^2/{Hz^{1/2}}}

Collaboration


Dive into the P. Zweifel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Armano

European Space Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge