Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paari Dominic Swaminathan is active.

Publication


Featured researches published by Paari Dominic Swaminathan.


Nature Medicine | 2011

Oxidation of CaMKII determines the cardiotoxic effects of aldosterone

B. Julie He; Mei Ling A Joiner; Madhu V. Singh; Elizabeth D. Luczak; Paari Dominic Swaminathan; Olha M. Koval; William Kutschke; Chantal Allamargot; Jinying Yang; Xiaoqun Guan; Kathy Zimmerman; Isabella M. Grumbach; Robert M. Weiss; Douglas R. Spitz; Curt D. Sigmund; W. Matthijs Blankesteijn; Stephane Heymans; Peter J. Mohler; Mark E. Anderson

Excessive activation of the β-adrenergic, angiotensin II (Ang II) and aldosterone signaling pathways promotes mortality after myocardial infarction, and antagonists targeting these pathways are core therapies for treating this condition. Catecholamines and Ang II activate the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII), the inhibition of which prevents isoproterenol-mediated and Ang II–mediated cardiomyopathy. Here we show that aldosterone exerts direct toxic actions on myocardium by oxidative activation of CaMKII, causing cardiac rupture and increased mortality in mice after myocardial infarction. Aldosterone induces CaMKII oxidation by recruiting NADPH oxidase, and this oxidized and activated CaMKII promotes matrix metalloproteinase 9 (MMP9) expression in cardiomyocytes. Myocardial CaMKII inhibition, overexpression of methionine sulfoxide reductase A (an enzyme that reduces oxidized CaMKII) or NADPH oxidase deficiency prevented aldosterone-enhanced cardiac rupture after myocardial infarction. These findings show that oxidized myocardial CaMKII mediates the cardiotoxic effects of aldosterone on the cardiac matrix and establish CaMKII as a nodal signal for the neurohumoral pathways associated with poor outcomes after myocardial infarction.


Journal of Clinical Investigation | 2011

Oxidized CaMKII causes cardiac sinus node dysfunction in mice

Paari Dominic Swaminathan; Anil Purohit; Siddarth Soni; Niels Voigt; Madhu V. Singh; Alexey V. Glukhov; Zhan Gao; B. Julie He; Elizabeth D. Luczak; Mei Ling A Joiner; William Kutschke; Jinying Yang; J. Kevin Donahue; Robert M. Weiss; Isabella M. Grumbach; Masahiro Ogawa; Peng Sheng Chen; Igor R. Efimov; Dobromir Dobrev; Peter J. Mohler; Thomas J. Hund; Mark E. Anderson

Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47-/- mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII-triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients.


Journal of Clinical Investigation | 2013

Diabetes increases mortality after myocardial infarction by oxidizing CaMKII

Min Luo; Xiaoqun Guan; Elizabeth D. Luczak; Di Lang; William Kutschke; Zhan Gao; Jinying Yang; Patric Glynn; Samuel Sossalla; Paari Dominic Swaminathan; Robert M. Weiss; Baoli Yang; Adam G. Rokita; Lars S. Maier; Igor R. Efimov; Thomas J. Hund; Mark E. Anderson

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca(2+)/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


Circulation Research | 2012

Calmodulin-Dependent Protein Kinase II: Linking Heart Failure and Arrhythmias

Paari Dominic Swaminathan; Anil Purohit; Thomas J. Hund; Mark E. Anderson

Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.


Circulation | 2013

Oxidized CaMKII Triggers Atrial Fibrillation

Anil Purohit; Adam G. Rokita; Xiaoqun Guan; Biyi Chen; Olha M. Koval; Niels Voigt; Stefan Neef; Thomas Sowa; Zhan Gao; Elizabeth D. Luczak; Hrafnhildur Stefansdottir; Andrew C. Behunin; Na Li; Ramzi El Accaoui; Baoli Yang; Paari Dominic Swaminathan; Robert M. Weiss; Xander H.T. Wehrens; Long-Sheng Song; Dobromir Dobrev; Lars S. Maier; Mark E. Anderson

Background —Atrial fibrillation is a growing public health problem without adequate therapies. Angiotensin II (Ang II) and reactive oxygen species (ROS) are validated risk factors for atrial fibrillation (AF) in patients, but the molecular pathway(s) connecting ROS and AF is unknown. The Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a ROS activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ(ox-CaMKII) could contribute to AF. Methods and Results —We found ox-CaMKII was increased in atria from AF patients compared to patients in sinus rhythm and from mice infused with Ang II compared with saline. Ang II treated mice had increased susceptibility to AF compared to saline treated WT mice, establishing Ang II as a risk factor for AF in mice. Knock in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardial-restricted transgenic over-expression of methionine sulfoxide reductase A (MsrA TG), an enzyme that reduces ox-CaMKII, were resistant to AF induction after Ang II infusion. Conclusions —Our studies suggest that CaMKII is a molecular signal that couples increased ROS with AF and that therapeutic strategies to decrease ox-CaMKII may prevent or reduce AF.Background— Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a reactive oxygen species–activated proarrhythmic signal, so we hypothesized that oxidized CaMKII&dgr; could contribute to AF. Methods and Results— We found that oxidized CaMKII was increased in atria from AF patients compared with patients in sinus rhythm and from mice infused with angiotensin II compared with mice infused with saline. Angiotensin II–treated mice had increased susceptibility to AF compared with saline-treated wild-type mice, establishing angiotensin II as a risk factor for AF in mice. Knock-in mice lacking critical oxidation sites in CaMKII&dgr; (MM-VV) and mice with myocardium-restricted transgenic overexpression of methionine sulfoxide reductase A, an enzyme that reduces oxidized CaMKII, were resistant to AF induction after angiotensin II infusion. Conclusions— Our studies suggest that CaMKII is a molecular signal that couples increased reactive oxygen species with AF and that therapeutic strategies to decrease oxidized CaMKII may prevent or reduce AF.


Circulation Research | 2010

RGS6, a Modulator of Parasympathetic Activation in Heart

Jianqi Yang; Jie Huang; Biswanath Maity; Zhan Gao; Ramón A. Lorca; Hjalti Gudmundsson; Jingdong Li; Adele Stewart; Paari Dominic Swaminathan; Stella-Rita Ibeawuchi; Andrew J. Shepherd; Ching-Kang Chen; William Kutschke; Peter J. Mohler; Durga P. Mohapatra; Mark E. Anderson; Rory A. Fisher

Rationale: Parasympathetic regulation of heart rate is mediated by acetylcholine binding to G protein–coupled muscarinic M2 receptors, which activate heterotrimeric Gi/o proteins to promote G protein–coupled inwardly rectifying K+ (GIRK) channel activation. Regulator of G protein signaling (RGS) proteins, which function to inactivate G proteins, are indispensable for normal parasympathetic control of the heart. However, it is unclear which of the more than 20 known RGS proteins function to negatively regulate and thereby ensure normal parasympathetic control of the heart. Objective: To examine the specific contribution of RGS6 as an essential regulator of parasympathetic signaling in heart. Methods and Results: We developed RGS6 knockout mice to determine the functional impact of loss of RGS6 on parasympathetic regulation of cardiac automaticity. RGS6 exhibited a uniquely robust expression in the heart, particularly in sinoatrial and atrioventricular nodal regions. Loss of RGS6 provoked dramatically exaggerated bradycardia in response to carbachol in mice and isolated perfused hearts and significantly enhanced the effect of carbachol on inhibition of spontaneous action potential firing in sinoatrial node cells. Consistent with a role of RGS6 in G protein inactivation, RGS6-deficient atrial myocytes exhibited a significant reduction in the time course of acetylcholine-activated potassium current (IKACh) activation and deactivation, as well as the extent of IKACh desensitization. Conclusions: RGS6 is a previously unrecognized, but essential, regulator of parasympathetic activation in heart, functioning to prevent parasympathetic override and severe bradycardia. These effects likely result from actions of RGS6 as a negative regulator of G protein activation of GIRK channels.


Circulation Research | 2013

Genetic Inhibition of Na+-Ca2+ Exchanger Current Disables Fight or Flight Sinoatrial Node Activity Without Affecting Resting Heart Rate

Zhan Gao; Tyler P. Rasmussen; Yue Li; William Kutschke; Olha M. Koval; yiming Wu; Yuejin Wu; Duane D. Hall; Mei Ling A Joiner; Xiangqiong Wu; Paari Dominic Swaminathan; Anil Purohit; Kathy Zimmerman; Robert M. Weiss; Kenneth D. Philipson; Long-Sheng Song; Thomas J. Hund; Mark E. Anderson

Rationale: The sodium–calcium exchanger 1 (NCX1) is predominantly expressed in the heart and is implicated in controlling automaticity in isolated sinoatrial node (SAN) pacemaker cells, but the potential role of NCX1 in determining heart rate in vivo is unknown. Objective: To determine the role of Ncx1 in heart rate. Methods and Results: We used global myocardial and SAN-targeted conditional Ncx1 knockout (Ncx1−/−) mice to measure the effect of the NCX current on pacemaking activity in vivo, ex vivo, and in isolated SAN cells. We induced conditional Ncx1−/− using a Cre/loxP system. Unexpectedly, in vivo and ex vivo hearts and isolated SAN cells showed that basal rates in Ncx1−/− (retaining ≈20% of control level NCX current) and control mice were similar, suggesting that physiological NCX1 expression is not required for determining resting heart rate. However, increases in heart rate and SAN cell automaticity in response to isoproterenol or the dihydropyridine Ca2+ channel agonist BayK8644 were significantly blunted or eliminated in Ncx1−/− mice, indicating that NCX1 is important for fight or flight heart rate responses. In contrast, the pacemaker current and L-type Ca2+ currents were equivalent in control and Ncx1−/− SAN cells under resting and isoproterenol-stimulated conditions. Ivabradine, a pacemaker current antagonist with clinical efficacy, reduced basal SAN cell automaticity similarly in control and Ncx1−/− mice. However, ivabradine decreased automaticity in SAN cells isolated from Ncx1−/− mice more effectively than in control SAN cells after isoproterenol, suggesting that the importance of NCX current in fight or flight rate increases is enhanced after pacemaker current inhibition. Conclusions: Physiological Ncx1 expression is required for increasing sinus rates in vivo, ex vivo, and in isolated SAN cells, but not for maintaining resting heart rate.


Journal of Clinical Investigation | 2013

Diabetes increases mortality after myocardial infarction by oxidizingCaMKII

Min Luo; Xiaoqun Guan; Elizabeth D. Luczak; Di Lang; William Kutschke; Zhan Gao; Jinying Yang; Patric Glynn; Samuel Sossalla; Paari Dominic Swaminathan; Robert M. Weiss; Baoli Yang; Adam G. Rokita; Lars S. Maier; Igor R. Efimov; Thomas J. Hund; Mark E. Anderson

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


American Journal of Therapeutics | 2011

Comparison of low molecular weight heparin with unfractionated heparin during percutaneous coronary interventions: a meta-analysis

Vamsi Kodumuri; Sashi Adigopula; Param Singh; Paari Dominic Swaminathan; Rohit Arora; Sandeep Khosla

To conduct a meta-analysis of the current evidence to evaluate the safety and efficacy of low molecular weight heparin (LMWH) as compared to unfractionated heparin (UFH). Several studies have demonstrated the therapeutic advantage of LMWH over UFH in the medical management of acute coronary syndromes. However, evidence comparing the 2 in percutaneous coronary interventions (PCI) is inconclusive. Previously published meta-analysis did not include some large-scale trials. We performed a systematic literature search for randomized clinical trials that compared LMWH and UFH in urgent or elective PCI. Studies that evaluated efficacy end points [composite of nonfatal myocardial infarction (MI) and death with or without target vessel revascularization] and bleeding end points were included. Studies were excluded if they involved coadministration of thrombolytics. Data were extracted on an intention-to-treat basis. Heterogeneity of the studies was analyzed by Cochran Q statistics. The Mantel-Haenszel fixed-effect model was used to calculate combined relative risks for outcomes where studies were homogenous and the random effect model when the studies were heterogenic. Fourteen studies involving 12,394 patients were included. The efficacy and bleeding risk of LMWH in patients undergoing PCI were comparable with UFH. A subgroup analysis of studies using intravenous or intraarterial administration of LMWH, demonstrated them to be safer than UFH with comparable efficacy. LMWH is at least as efficacious and safe as UFH in patients undergoing PCI. Additionally, evidence suggests that LMWH, when used intravenously, is associated with lower bleeding risks when compared with UFH.


Journal of Clinical Investigation | 2013

Erratum: Diabetes increases mortality after myocardial infarction by oxidizing CaMKII (Journal of Clinical Investigation (2013) 123:5 (2333) 10.1172/JCI70180)

Min Luo; Xiaoqun Guan; Elizabeth D. Luczak; Di Lang; William Kutschke; Zhan Gao; Jinying Yang; Patric Glynn; Samuel Sossalla; Paari Dominic Swaminathan; Robert M. Weiss; Baoli Yang; Adam G. Rokita; Lars S. Maier; Igor R. Efimov; Thomas J. Hund; Mark E. Anderson

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.

Collaboration


Dive into the Paari Dominic Swaminathan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Hund

The Ohio State University Wexner Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge