Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paavo K.J. Kinnunen is active.

Publication


Featured researches published by Paavo K.J. Kinnunen.


Nature | 2010

Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology.

Thomas Kirkegaard; Anke G. Roth; Nikolaj H.T. Petersen; Ajay K. Mahalka; Ole Dines Olsen; Irina Moilanen; Alicja Zylicz; Jens Knudsen; Konrad Sandhoff; Christoph Arenz; Paavo K.J. Kinnunen; Jesper Nylandsted; Marja Jäättelä

Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism. In acidic environments Hsp70 binds with high affinity and specificity to BMP, thereby facilitating the BMP binding and activity of acid sphingomyelinase (ASM). The inhibition of the Hsp70–BMP interaction by BMP antibodies or a point mutation in Hsp70 (Trp90Phe), as well as the pharmacological and genetic inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann–Pick disease (NPD) A and B—severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM—is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds that enter the lysosomal lumen by the endocytic delivery pathway.


Chemistry and Physics of Lipids | 1991

On the principles of functional ordering in biological membranes.

Paavo K.J. Kinnunen

Integrating the available data on lipid-protein interactions and ordering in lipid mixtures allows to emanate a refined model for the dynamic organization of biomembranes. An important difference to the fluid mosaic model is that a high degree of spatiotemporal order should prevail also in liquid crystalline, fluid membranes and membrane domains. The interactions responsible for ordering the membrane lipids and proteins are hydrophobicity, coulombic forces, van der Waals dispersion, hydrogen bonding, hydration forces and steric elastic strain. Specific lipid-lipid and lipid-protein interactions result in a precisely controlled yet highly dynamic architecture of the membrane components, as well as in its selective modulation by the cell and its environment. Different modes of organization of the compositionally and functionally differentiated domains would correspond to different functional states of the membrane. Major regulators of membrane architecture are proposed to be membrane potential controlled by ion channels, intracellular Ca2+, pH, changes in lipid composition due to the action of phospholipase, cell-cell coupling, as well as coupling of the membrane with the cytoskeleton and the extracellular matrix. Membrane architecture is additionally modulated due to the membrane association of ions, lipo- and amphiphilic hormones, metabolites, drugs, lipid-binding peptide hormones and amphitropic proteins. Intermolecular associations in the membrane and in the membrane-cytoskeleton interface are further selectively controlled by specific phosphorylation and dephosphorylation cascades involving both proteins and lipids, and regulated by the extracellular matrix and the binding of growth factors and hormones to their specific receptor tyrosine kinases. A class of proteins coined architectins is proposed, as a notable example the pp60src kinase. The functional role of architectins would be in causing specific changes in the cytoskeleton-membrane interface, leading to specific configurational changes both in the membrane and cytoskeleton architecture and corresponding to (a) distinct metabolic/differentiation states of the cell, and (b) the formation and maintenance of proper three dimensional membrane structures such as neurites and pseudopods.


Biophysical Journal | 1995

Phospholipase A2 as a mechanosensor.

Jukka Lehtonen; Paavo K.J. Kinnunen

Osmotic swelling of large unilamellar vesicles (LUVs) causes membrane stretching and thus reduces the lateral packing of lipids. This is demonstrated to modulate strongly the catalytic activity of phospholipase A2 (PLA2) toward a fluorescent phospholipid, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) residing in LUVs composed of different unsaturated and saturated phosphatidylcholines. The magnitude of the osmotic pressure gradient delta omega required for maximal PLA2 activity as well as the extent of activation depend on the degree of saturation of the membrane phospholipid acyl chains. More specifically, delta omega needed for maximal hydrolytic activity increases in the sequence DOPC < SOPC < DMPC in accordance with the increment in the intensity of chain-chain van der Waals interactions. Previous studies on the hydrolysis of substrate monolayers by C. adamanteus and N. naja PLA2 revealed maximal hydrolytic rates for these two enzymes to be achieved at lipid packing densities corresponding to surface pressures of 12 and 18 mN m-1, respectively. In keeping with the above the magnitudes of delta omega producing maximal activity of Crotalus adamanteus and Naja naja toward PPDPC/DMPC LUVs were 40 and 20 mOsm/kg, respectively. Our findings suggest a novel possibility of regulating the activity of PLA2 and perhaps also other lipid packing density-dependent enzymes in vivo by osmotic forces applied on cellular membranes. Importantly, our results reveal serendipitously that the responsiveness of membranes to osmotic stress is modulated by the acyl chain composition of the lipids.


Biophysical Journal | 2011

Oxidized Phosphatidylcholines Facilitate Phospholipid Flip-Flop in Liposomes

Roman Volinsky; Lukasz Cwiklik; Piotr Jurkiewicz; Martin Hof; Pavel Jungwirth; Paavo K.J. Kinnunen

Lipid asymmetry is a ubiquitous property of the lipid bilayers in cellular membranes and its maintenance and loss play important roles in cell physiology, such as blood coagulation and apoptosis. The resulting exposure of phosphatidylserine on the outer surface of the plasma membrane has been suggested to be caused by a specific membrane enzyme, scramblase, which catalyzes phospholipid flip-flop. Despite extensive research the role of scramblase(s) in apoptosis has remained elusive. Here, we show that phospholipid flip-flop is efficiently enhanced in liposomes by oxidatively modified phosphatidylcholines. A combination of fluorescence spectroscopy and molecular dynamics simulations reveal that the mechanistic basis for this property of oxidized phosphatidylcholines is due to major changes imposed by the oxidized phospholipids on the biophysical properties of lipid bilayers, resulting in a fast cross bilayer diffusion of membrane phospholipids and loss of lipid asymmetry, requiring no scramblase protein.


FEBS Journal | 2013

Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology

Roman Volinsky; Paavo K.J. Kinnunen

The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane‐associated proteins. It is only recently that methodological advances in molecular‐level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinsons and Alzheimers, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid‐bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip‐flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of ‘rafts’). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid–protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes.


Cellular Physiology and Biochemistry | 2000

Lipid Bilayers as Osmotic Response Elements

Paavo K.J. Kinnunen

The importance of osmolarity in the regulation of a wide range of cellular functions and processes is well established. However, much less is known about the molecular mechanisms imparting sensitivity to osmotic forces to cells. The findings summarized in this brief review demonstrate that the principal structural element of all biomembranes, the lipid bilayer, provides a highly sensitive machinery for conveying information in the osmotic conditions of a cell to the relevant regulatory machineries. More specifically, osmotic shrinkage, swelling, as well as applied osmotic stress all have pronounced effects on the physical state and molecular interactions in the bilayer, influencing lipid packing and dynamics, and also altering the 2-dimensional (lateral) ordering in the membrane into compositionally distinct microdomains. Because of the cooperative behavior of lipid bilayers integrative regulation of the functions embedded in the different organelle membranes by the physical properties of lipids is possible. Organelle membranes should thus be understood as adaptive platforms harboring specialized metabolic pathways and functions, whose activities (physiological state) can be controlled by the physical state of the membrane lipids. Finally, it is important to keep in mind that virtually all biological macromolecules maintain a hydration shell. Living cells thus constitute highly complex supramolecular assemblies, their numerous components responding to osmotic forces in unison.


Biochimica et Biophysica Acta | 2012

Protein-oxidized phospholipid interactions in cellular signaling for cell death: From biophysics to clinical correlations

Paavo K.J. Kinnunen; Kai Kaarniranta; Ajay K. Mahalka

Oxidative stress is associated with several major ailments. However, it is only recently that the developments in our molecular level understanding of the consequences of oxidative stress in modifying the chemical structures of biomolecules, lipids in particular, are beginning to open new emerging insights into the significance of oxidative stress in providing mechanistic insights into the etiologies of these diseases. In this brief review we will first discuss the role of lipid oxidation in controlling the membrane binding of cytochrome c, a key protein in the control of apoptosis. We then present an overview of the impact of oxidized phospholipids on the biophysical properties of lipid bilayers and continue to discuss, how these altered properties can account for the observed enhancement of formation of intermediate state oligomers by cytotoxic amyloid forming peptides associated with pathological conditions as well as host defense peptides of innate immunity. In the third part, we will discuss how the targeting of oxidized phospholipids by i) pathology associated peptides and ii) host defense peptides can readily explain the observed clinical correlations associating Alzheimers and Parkinsons diseases with increased risk for type 2 diabetes and age-related macular degeneration, and the apparent protective effect of Alzheimers and Parkinsons diseases from some cancers, as well as the inverse, apparent protection by cancer from Alzheimers and Parkinsons diseases. This article is part of a Special Issue entitled: Oxidized phospholipids-Their properties and interactions with proteins.


Biophysical Journal | 2003

Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection

Samppa J. Ryhänen; Matti Säily; Tommi Paukku; Stefano Borocci; Giovanna Mancini; Juha M. Holopainen; Paavo K.J. Kinnunen

The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with X(SR-1) > or = 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with X(SR-1) > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when X(SR-1) > 0.50. Condensation of DNA in turn seems to be required for efficient transfection.


Biophysical Journal | 2012

Oxidized Phosphatidylcholines Promote Phase Separation of Cholesterol-Sphingomyelin Domains

Roman Volinsky; Riku Paananen; Paavo K.J. Kinnunen

Lipid lateral segregation in the plasma membrane is believed to play an important role in cell physiology. Sphingomyelin (SM) and cholesterol (Chol)-enriched microdomains have been proposed as liquid-ordered phase platforms that serve to localize signaling complexes and modulate the intrinsic activities of the associated proteins. We modeled plasma membrane domain organization using Langmuir monolayers of ternary POPC/SM/Chol as well as DMPC/SM/Chol mixtures, which exhibit a surface-pressure-dependent miscibility transition of the coexisting liquid-ordered and -disordered phases. Using Brewster angle microscopy and Langmuir monolayer compression isotherms, we show that the presence of an oxidatively modified phosphatidylcholine, 1-palmitoyl-2-azelaoyl-sn-glydecero-3-phosphocholine, efficiently opposes the miscibility transition and stabilizes micron-sized domain separation at lipid lateral packing densities corresponding to the equilibrium lateral pressure of ∼32 mN/m that is suggested to prevail in bilayer membranes. This effect is ascribed to augmented hydrophobic mismatch induced by the oxidatively truncated phosphatidylcholine. To our knowledge, our results represent the first quantitative estimate of the relevant level of phospholipid oxidation that can potentially induce changes in cell membrane organization and its associated functions.


Journal of Nanobiotechnology | 2010

Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium

Jing Zou; Rohit Sood; Sanjeev Ranjan; Dennis S. Poe; Usama Abo Ramadan; Paavo K.J. Kinnunen; Ilmari Pyykkö

BackgroundTreatment of inner ear diseases remains a problem because of limited passage through the blood-inner ear barriers and lack of control with the delivery of treatment agents by intravenous or oral administration. As a minimally-invasive approach, intratympanic delivery of multifunctional nanoparticles (MFNPs) carrying genes or drugs to the inner ear is a future therapy for treating inner ear diseases, including sensorineural hearing loss (SNHL) and Menieres disease. In an attempt to track the dynamics and distribution of nanoparticles in vivo, here we describe manufacturing MRI traceable liposome nanoparticles by encapsulating gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) (abbreviated as LPS+Gd-DOTA) and their distribution in the inner ear after either intratympanic or intracochlear administration.ResultsMeasurements of relaxivities (r1 and r2) showed that LPS+Gd-DOTA had efficient visible signal characteristics for MRI. In vivo studies demonstrated that LPS+Gd-DOTA with 130 nm size were efficiently taken up by the inner ear at 3 h after transtympanic injection and disappeared after 24 h. With intracochlear injection, LPS+Gd-DOTA were visualized to distribute throughout the inner ear, including the cochlea and vestibule with fast dynamics depending on the status of the perilymph circulation.ConclusionNovel LPS+Gd-DOTA were visible by MRI in the inner ear in vivo demonstrating transport from the middle ear to the inner ear and with dynamics that correlated to the status of the perilymph circulation.

Collaboration


Dive into the Paavo K.J. Kinnunen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Hof

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge