Pabla Aguirre
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pabla Aguirre.
Journal of Neurochemistry | 2013
Pamela J. Urrutia; Pabla Aguirre; Andrés Esparza; Victoria Tapia; Natalia Mena; Miguel Arredondo; Christian González-Billault; Marco T. Núñez
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimers disease and Parkinsons disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF‐α) and interleukin 6 (IL‐6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin‐target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron‐induced oxidative damage.
Biometals | 2012
Marco T. Núñez; Pamela J. Urrutia; Natalia Mena; Pabla Aguirre; Victoria Tapia; Julio Salazar
Iron is an essential element for life on earth, participating in a plethora of cellular processes where one-electron transfer reactions are required. Its essentiality, coupled to its scarcity in aqueous oxidative environments, has compelled living organisms to develop mechanisms that ensure an adequate iron supply, at times with disregard to long-term deleterious effects derived from iron accumulation. However, iron is an intrinsic producer of reactive oxygen species, and increased levels of iron promote neurotoxicity because of hydroxyl radical formation, which results in glutathione consumption, protein aggregation, lipid peroxidation and nucleic acid modification. Neurons from brain areas sensitive to degeneration accumulate iron with age and thus are subjected to an ever increasing oxidative stress with the accompanying cellular damage. The ability of these neurons to survive depends on the adaptive mechanisms developed to cope with the increasing oxidative load. Here, we describe the chemical and thermodynamic peculiarities of iron chemistry in living matter, review the components of iron homeostasis in neurons and elaborate on the mechanisms by which iron homeostasis is lost in Parkinson’s disease, Alzheimer’s disease and other diseases in which iron accumulation has been demonstrated.
BMC Neuroscience | 2005
Pabla Aguirre; Natalia Mena; Victoria Tapia; Miguel Arredondo; Marco T. Núñez
BackgroundIron is necessary for neuronal function but in excess generates neurodegeneration. Although most of the components of the iron homeostasis machinery have been described in neurons, little is known about the particulars of their iron homeostasis. In this work we characterized the response of SH-SY5Y neuroblastoma cells and hippocampal neurons to a model of progressive iron accumulation.ResultsWe found that iron accumulation killed a large proportion of cells, but a sub-population became resistant to iron. The surviving cells evoked an adaptative response consisting of increased synthesis of the iron-storage protein ferritin and the iron export transporter IREG1, and decreased synthesis of the iron import transporter DMT1. Increased expression of IREG1 was further substantiated by immunocytochemistry and iron efflux experiments. IREG1 expression directly correlated with iron content in SH-SY5Y and hippocampal cells. Similarly, a high correlation was found between IREG1 expression and the rate of iron efflux from SH-SY5Y cells.ConclusionsNeuronal survival of iron accumulation associates with increased expression of the efflux transporter IREG1. Thus, the capacity of neurons to express IREG1 may be one of the clues to iron accumulation survival.
Biometals | 2012
Pabla Aguirre; Pamela J. Urrutia; Victoria Tapia; Monica Villa; Irmgad Paris; Juan Segura-Aguilar; Marco T. Núñez
Hallmarks of idiopathic and some forms of familial Parkinson’s disease are mitochondrial dysfunction, iron accumulation and oxidative stress in dopaminergic neurons of the substantia nigra. There seems to be a causal link between these three conditions, since mitochondrial dysfunction can give rise to increased electron leak and reactive oxygen species production. In turn, recent evidence indicates that diminished activity of mitochondrial complex I results in decreased Fe–S cluster synthesis and anomalous activation of Iron Regulatory Protein 1. Thus, mitochondrial dysfunction could be a founding event in the process that leads to neuronal death. Here, we present evidence showing that at low micromolar concentrations, the dopamine metabolite aminochrome inhibits complex I and ATP production in SH-SY5Y neuroblastoma cells differentiated into a dopaminergic phenotype. This effect is apparently direct, since it is replicated in isolated mitochondria. Additionally, overnight treatment with aminochrome increased the expression of the iron import transporter divalent metal transporter 1 and decreased the expression of the iron export transporter ferroportin 1. In accordance with these findings, cells treated with aminochrome presented increased iron uptake. These results suggest that aminochrome is an endogenous toxin that inhibits by oxidative modifications mitochondrial complex I and modifies the levels of iron transporters in a way that leads to iron accumulation.
Biological Research | 2006
Pablo Muñoz; Gabriela Zavala; Karen Castillo; Pabla Aguirre; Cecilia Hidalgo; Marco T. Núñez
Recent evidence suggests that reactive oxygen species function as second messenger molecules in normal physiological processes. For example, activation of N-Methyl-D-Aspartate receptor results in the production of ROS, which appears to be critical for synaptic plasticity, one of the cellular mechanisms that underlie learning and memory. In this work, we studied the effect of iron in the activation of MAPK/ERK pathway and on Ca2+ signaling in neuronal PC12 cells. We found that iron-dependent generation of hydroxyl radicals is likely to modulate Ca2+ signaling through RyR calcium channel activation, which, in turn, activates the MAPK/ERK pathway. These findings underline the relevance of iron in normal neuronal function.
American Journal of Physiology-cell Physiology | 2010
Marco T. Núñez; Victoria Tapia; Alejandro Rojas; Pabla Aguirre; Francisco J. Gómez; Francisco Nualart
Intestinal iron absorption comprises the coordinated activity of the influx transporter divalent metal transporter 1 (DMT1) and the efflux transporter ferroportin (FPN). In this work, we studied the movement of DMT1 and FPN between cellular compartments as a function of iron supply. In rat duodenum, iron gavage resulted in the relocation of DMT1 to basal domains and the internalization of basolateral FPN. Considerable FPN was also found in apical domains. In Caco-2 cells, the apical-to-basal movement of cyan fluorescent protein-tagged DMT1 was complete 90 min after the addition of iron. Steady-state membrane localization studies in Caco-2 cells revealed that iron status determined the apical/basolateral membrane distribution of DMT1 and FPN. In agreement with the membrane distribution of the transporters, (55)Fe flux experiments revealed inward and outward iron fluxes at both membrane domains. Antisense oligonucleotides targeted to DMT1 or FPN inhibited basolateral iron uptake and apical iron efflux, respectively, indicating the participation of DMT1 and FPN in these fluxes. The fluxes were regulated by the iron supply; increased iron reduced apical uptake and basal efflux and increased basal uptake and apical efflux. These findings suggest a novel mechanism of regulation of intestinal iron absorption based on inward and outward fluxes at both membrane domains, and repositioning of DMT1 and FPN between membrane and intracellular compartments as a function of iron supply. This mechanism should be complementary to those based in the transcriptional or translational regulation of iron transport proteins.
Biometals | 2006
Miguel Arredondo; Victoria Tapia; Alejandro Rojas; Pabla Aguirre; Francisca C. Reyes; Marı́a Paz Marzolo; Marco T. Núñez
Mutations in the HFE gene result in hereditary hemochromatosis, a disorder of iron metabolism characterized by increased intestinal iron absorption. Based on the observation that ectopic expression of HFE strongly inhibits apical iron uptake (Arredondo et al., 2001, FASEB J15, 1276–1278), a negative regulation of HFE on the apical membrane transporter DMT1 was proposed as a mechanism by which HFE regulates iron absorption. To test this hypothesis, we investigated: (i) the effect of HFE antisense oligonucleotides on apical iron uptake by polarized Caco-2 cells; (ii) the apical/basolateral membrane distribution of HFE, β-2 microglobulin and DMT1; (iii) the putative molecular association between HFE and DMT1. We found that HFE antisense treatment reduced HFE expression and increased apical iron uptake, whereas transfection with wild-type HFE inhibited iron uptake. Thus, an inverse relationship was established between HFE levels and apical iron uptake activity. Selective apical or basolateral biotinylation indicated preferential localization of DMT1 to the apical membrane and of HFE and β-2 microglobulin (β2m) to the basolateral membrane. Ectopic expression of HFE resulted in increased distribution of HFE–β2m to the apical membrane. The amount of HFE–β2m in the apical membrane inversely correlated with apical iron uptake rates. Immunoprecipitations of HFE or β2m with specific antibodies resulted in the co-precipitation of DMT1. These results sustain a model by which direct interaction between DMT1 and HFE–β2m in the apical membrane of Caco-2 cells result in down-regulation of apical iron uptake activity.
Biological Research | 2006
Paula Aracena; Pabla Aguirre; Pablo Muñoz; Marco T. Núñez
Neurons, as non-dividing cells, encounter a myriad of stressful conditions throughout their lifespan. In particular, there is increasing evidence that iron progressively accumulates in the brain with age and that iron induced oxidative stress is the cause of several forms of neurodegeneration. Here, we review recent evidence that gives support to the following notions: 1) neuronal iron accumulation leads to oxidative stress and cell death; 2) neuronal survival to iron accumulation associates with decreased expression of the iron import transporter DMT1 and increased expression of the efflux transporter IREG1; and 3) the adaptive process of neurons towards iron-induced oxidative stress includes a marked increase in both the expression of the catalytic subunit of gamma glutamate-cysteine ligase and glutathione. These findings may help to understand aging-related neurodegeneration hallmarks: oxidative damage, functional impairment and cell death.
Parkinson's Disease | 2016
Yorka Muñoz; Carlos M. Carrasco; Joaquín D. Campos; Pabla Aguirre; Marco T. Núñez
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinsons disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences—mitochondrial dysfunction, iron accumulation, and oxidative damage—generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinsons disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation—by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways—is a viable therapy for retarding this cycle.
Journal of Neurochemistry | 2006
Casilda V. Mura; Ricardo Delgado; Pabla Aguirre; Juan Bacigalupo; Marco T. Núñez
The brain uses massive amounts of oxygen, generating large quantities of reactive oxygen species (ROS). Because of its lipid composition, rich in unsaturated fatty acids, the brain is especially vulnerable to ROS. Furthermore, oxidative damage in the brain is often associated with iron, which has pro‐oxidative properties. Iron‐mediated oxidative damage in the brain is compounded by the fact that brain iron distribution is non‐uniform, being particularly high in areas sensitive to neurodegeneration. This work was aimed to further our understanding of the cellular mechanisms by which SHSY5Y neuroblastoma cells adapt to, and survive increasing iron loads. Using an iron accumulation protocol that kills about 50% of the cell population, we found by cell sorting analysis that the SHSY5Y sub‐population that survived the iron loading arrested in the G0 phase of the cell cycle. These cells expressed neuronal markers, while their electrical properties remained largely unaltered. These results suggest that upon iron challenge, neuroblastoma cells respond by entering the G0 phase, somehow rendering them resistant to oxidative stress. A similar physiological condition might be involved in neuronal survival in tissues known to accumulate iron with age, such as the hippocampus and the substantia nigra pars compacta.