Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo A. Marquet is active.

Publication


Featured researches published by Pablo A. Marquet.


Nature | 2012

Approaching a state shift in Earth’s biosphere

Anthony D. Barnosky; Elizabeth A. Hadly; Jordi Bascompte; Eric L. Berlow; James H. Brown; Mikael Fortelius; Wayne M. Getz; John Harte; Alan Hastings; Pablo A. Marquet; Neo D. Martinez; Arne Ø. Mooers; Peter D. Roopnarine; Geerat J. Vermeij; John W. Williams; Rosemary G. Gillespie; Justin Kitzes; Charles R. Marshall; Nicholas J. Matzke; David P. Mindell; Eloy Revilla; Adam B. Smith

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.


Ecology Letters | 2013

Heat freezes niche evolution

Miguel B. Araújo; Francisco Ferri-Yáñez; Francisco Bozinovic; Pablo A. Marquet; Fernando Valladares; Steven L. Chown

Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (n = 697), endotherm (n = 227) and plant (n = 1816) species worldwide, and show that tolerance to heat is largely conserved across lineages, while tolerance to cold varies between and within species. This pattern, previously documented for ectotherms, is apparent for this group and for endotherms and plants, challenging the longstanding view that physiological tolerances of species change continuously across climatic gradients. An alternative view is proposed in which the thermal component of climatic niches would overlap across species more than expected. We argue that hard physiological boundaries exist that constrain evolution of tolerances of terrestrial organisms to high temperatures. In contrast, evolution of tolerances to cold should be more frequent. One consequence of conservatism of upper thermal tolerances is that estimated niches for cold-adapted species will tend to underestimate their upper thermal limits, thereby potentially inflating assessments of risk from climate change. In contrast, species whose climatic preferences are close to their upper thermal limits will unlikely evolve physiological tolerances to increased heat, thereby being predictably more affected by warming.


The American Naturalist | 2004

Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time

Felisa A. Smith; James H. Brown; John P. Haskell; S. Kathleen Lyons; John Alroy; Eric L. Charnov; Tamar Dayan; Brian J. Enquist; S. K. Morgan Ernest; Elizabeth A. Hadly; Kate E. Jones; Dawn M. Kaufman; Pablo A. Marquet; Brian A. Maurer; Karl J. Niklas; Warren P. Porter; Bruce H. Tiffney; Michael R. Willig

Although it is commonly assumed that closely related animals are similar in body size, the degree of similarity has not been examined across the taxonomic hierarchy. Moreover, little is known about the variation or consistency of body size patterns across geographic space or evolutionary time. Here, we draw from a data set of terrestrial, nonvolant mammals to quantify and compare patterns across the body size spectrum, the taxonomic hierarchy, continental space, and evolutionary time. We employ a variety of statistical techniques including “sib‐sib” regression, phylogenetic autocorrelation, and nested ANOVA. We find an extremely high resemblance (heritability) of size among congeneric species for mammals over ∼18 g; the result is consistent across the size spectrum. However, there is no significant relationship among the body sizes of congeneric species for mammals under ∼18 g. We suspect that life‐history and ecological parameters are so tightly constrained by allometry at diminutive size that animals can only adapt to novel ecological conditions by modifying body size. The overall distributions of size for each continental fauna and for the most diverse orders are quantitatively similar for North America, South America, and Africa, despite virtually no overlap in species composition. Differences in ordinal composition appear to account for quantitative differences between continents. For most mammalian orders, body size is highly conserved, although there is extensive overlap at all levels of the taxonomic hierarchy. The body size distribution for terrestrial mammals apparently was established early in the Tertiary, and it has remained remarkably constant over the past 50 Ma and across the major continents. Lineages have diversified in size to exploit environmental opportunities but only within limits set by allometric, ecological, and evolutionary constraints.


Ecology Letters | 2011

Spatial patterns of phylogenetic diversity

Hélène Morlon; Dylan W. Schwilk; Jessica A. Bryant; Pablo A. Marquet; Anthony G Rebelo; Catherine Tauss; Brendan J. M. Bohannan; Jessica L. Green

Ecologists and conservation biologists have historically used species–area and distance–decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species–area and distance–decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity – the total phylogenetic branch-length separating a set of species – with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.


Advances in Ecological Research | 2012

Distributional (in) congruence of Biodiversity-Ecosystem Functioning

Christian Mulder; Alice Boit; S. Mori; J.A. Vonk; S.D. Dyer; L. Faggiano; Stefan Geisen; Angélica L. González; M. Kaspari; Sandra Lavorel; Pablo A. Marquet; Axel G. Rossberg; R.W. Sterner; Winfried Voigt; Diana H. Wall

The majority of research on biodiversity–ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors of niche complementarity and community structures, we (1) examine how the diversity sensu lato of forest trees, freshwater fishes and soil invertebrates might support ecosystem functioning and (2) discuss the relevance of productive biota for monophyletic assemblages (taxocenes). n nIn terrestrial ecosystems, correlating traits to abiotic factors is complicated by the appropriate choice of body-size distributions. Angiosperm and gymnosperm trees, for example, show metabolic incongruences in their respiration rates despite their pronounced macroecological scaling. Scaling heterotrophic organisms within their monophyletic assemblages seems more difficult than scaling autotrophs: in contrast to the generally observed decline of mass-specific metabolic rates with body mass within metazoans, soil organisms such as protozoans show opposite mass-specific trends. n nAt the community level, the resource demand of metazoans shapes multitrophic interactions. Hence, population densities and their food web relationships reflect functional diversity, but the influence of biodiversity on stability and ecosystem functioning remains less clear. We focused on fishes in 18 riverine food webs, where the ratio of primary versus secondary extinctions (hereafter, ‘extinction partitioning’) summarizes the responses of fish communities to primary species loss (deletions) and its consequences. Based on extinction partitioning, our high-diversity food webs were just as (or even more) vulnerable to extinctions as low-diversity food webs. n nOur analysis allows us to assess consequences of the relocation or removal of fish species and to help with decision-making in sustainable river management. The study highlights that the topology of food webs (and not simply taxonomic diversity) plays a greater role in stabilizing the food web and enhancing ecological services than is currently acknowledged.


Journal of Theoretical Biology | 2010

Vegetation pattern formation in a fog-dependent ecosystem

Ana Inés Borthagaray; Miguel A. Fuentes; Pablo A. Marquet

Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems.


Oecologia | 2011

Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile

Angélica L. González; José M. Fariña; Raquel Pinto; Cecilia A. Pérez; Kathleen C. Weathers; Juan J. Armesto; Pablo A. Marquet

Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Inferring species roles in metacommunity structure from species co-occurrence networks

Ana Inés Borthagaray; Matías Arim; Pablo A. Marquet

A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion because of their link to resource use and dispersal ability. Small-sized individuals at low-trophic levels, and with limited dispersal potential, are expected to form highly linked subgroups, whereas large-size individuals at higher trophic positions, and with good dispersal potential, will foster the spatial coupling of subgroups and the cohesion of the whole metacommunity. By using modularity analysis, we identified six modules of species with similar responses to ecological conditions and high co-occurrence across local communities. Most species either co-occur with species from a single module or are connectors of the whole network. Among the latter are carnivorous species of intermediate body size, which by virtue of their high incidence provide connectivity to otherwise isolated communities playing the role of spatial couplers. Our study also demonstrates that the incorporation of network tools to the analysis of metacommunity ecology can help unveil the mechanisms underlying patterns and processes in metacommunity assembly.


Theoretical Ecology | 2013

Range structure analysis: unveiling the internal structure of species’ ranges

Horacio Samaniego; Pablo A. Marquet

Assessing risks of local extinction and shifts in species ranges are fundamental tasks in ecology and conservation. Most studies have focused either on the border of species’ range or on complex spatiotemporal dynamics of populations within the spatial distribution of species. The internal properties of species ranges, however, have received less attention due to a general lack of simple tools. We propose a novel approach within a metapopulation framework to study species ranges based on simple mathematical rules. We formulate and test a model of population fluctuations through space to identify key factors that regulate population density. We propose that spatial variability in species abundance reflects the interaction between temporal variability in population dynamics and the spatial variability of population parameters. This approach, that we call range structure analysis, integrates temporal and spatial properties to diagnose how each parameter contributes to species occupancy throughout its geographic range.


Theoretical Ecology | 2012

Diversity emerging: from competitive exclusion to neutral coexistence in ecosystems

Juan E. Keymer; Miguel Fuentes; Pablo A. Marquet

In this communication, we present a unifying framework to understand the emergence and maintenance of diversity in ecological systems. We do this by developing a deterministic population model including density-dependent limitation in resources and available space. Our model shows that competitive exclusion and neutral coexistence represent different regimes of the same adaptive dynamics suggesting that neutrality is the general result of an adaptive process in a finite habitat with limited energetic resources. Our model explains the emergence of biodiversity through mutation and its maintenance through neutrality. We show that this framework provides the theoretical foundations to understand the emergence and maintenance of diversity in microbial ecosystems.

Collaboration


Dive into the Pablo A. Marquet's collaboration.

Top Co-Authors

Avatar

James H. Brown

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

David Storch

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Bozinovic

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Juan J. Armesto

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian A. Maurer

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Angélica L. González

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ana Inés Borthagaray

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge