Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo A. Parrilo is active.

Publication


Featured researches published by Pablo A. Parrilo.


Siam Review | 2010

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

Benjamin Recht; Maryam Fazel; Pablo A. Parrilo

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum-rank solution can be recovered by solving a convex optimization problem, namely, the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to minimizing the nuclear norm and illustrate our results with numerical examples.


Siam Journal on Optimization | 2011

RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION *

Venkat Chandrasekaran; Sujay Sanghavi; Pablo A. Parrilo; Alan S. Willsky

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Suc...


Foundations of Computational Mathematics | 2012

The Convex Geometry of Linear Inverse Problems

Venkat Chandrasekaran; Benjamin Recht; Pablo A. Parrilo; Alan S. Willsky

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.


conference on decision and control | 2002

Introducing SOSTOOLS: a general purpose sum of squares programming solver

Stephen Prajna; Antonis Papachristodoulou; Pablo A. Parrilo

SOSTOOLS is a MATLAB toolbox for constructing and solving sum of squares programs. It can be used in combination with semidefinite programming software, such as SeDuMi, to solve many continuous and combinatorial optimization problems, as well as various control-related problems. The paper provides an overview on sum of squares programming, describes the primary features of SOSTOOLS, and shows how SOSTOOLS is used to solve sum of squares programs. Some applications from different areas are presented to show the wide applicability of sum of squares programming in general and SOSTOOLS in particular.


Journal of Pure and Applied Algebra | 2004

Symmetry groups, semidefinite programs, and sums of squares

Karin Gatermann; Pablo A. Parrilo

Abstract We investigate the representation of multivariate symmetric polynomials as sum of squares, as well as the effective computation of this decomposition. Since this task is solved using semidefinite programming tools we explore the geometric, algebraic, and computational implications of the presence of discrete symmetries in semidefinite programs. It is shown that symmetry exploitation allows a significant reduction in both matrix size and number of decision variables. The results, reinterpreted from an invariant-theoretic viewpoint, provide a novel representation of a class of nonnegative symmetric polynomials. For this, we introduce a common generalization of sum of squares polynomials and positive semidefinite matrices, termed “sum of squares matrices.” The main theorem states that an invariant sum of squares polynomial is a sum of inner products of pairs of matrices, whose entries are invariant polynomials. In these pairs, one of the matrices is computed based on the real irreducible representations of the group, and the other is a sum of squares matrix. The reduction techniques enable the numerical solution of large-scale instances, otherwise computationally infeasible to solve.


IEEE Transactions on Automatic Control | 2004

Nonlinear control synthesis by convex optimization

Stephen Prajna; Pablo A. Parrilo; Anders Rantzer

A stability criterion for nonlinear systems, recently derived by the third author, can be viewed as a dual to Lyapunovs second theorem. The criterion is stated in terms of a function which can be interpreted as the stationary density of a substance that is generated all over the state-space and flows along the system trajectories toward the equilibrium. The new criterion has a remarkable convexity property, which in this note is used for controller synthesis via convex optimization. Recent numerical methods for verification of positivity of multivariate polynomials based on sum of squares decompositions are used.


Archive | 2012

Semidefinite Optimization and Convex Algebraic Geometry

Grigoriy Blekherman; Pablo A. Parrilo; Rekha R. Thomas

This book provides a self-contained, accessible introduction to the mathematical advances and challenges resulting from the use of semidefinite programming in polynomial optimization. This quickly evolving research area with contributions from the diverse fields of convex geometry, algebraic geometry, and optimization is known as convex algebraic geometry. Each chapter addresses a fundamental aspect of convex algebraic geometry. The book begins with an introduction to nonnegative polynomials and sums of squares and their connections to semidefinite programming and quickly advances to several areas at the forefront of current research. These include semidefinite representability of convex sets, duality theory from the point of view of algebraic geometry, and nontraditional topics such as sums of squares of complex forms and noncommutative sums of squares polynomials. Suitable for a class or seminar, with exercises aimed at teaching the topics to beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point of entry into the subject for readers from multiple communities such as engineering, mathematics, and computer science. A guide to the necessary background material is available in the appendix. Audience This book can serve as a textbook for graduate-level courses presenting the basic mathematics behind convex algebraic geometry and semidefinite optimization. Readers conducting research in these areas will discover open problems and potential research directions. Contents: List of Notation; Chapter 1: What is Convex Algebraic Geometry?; Chapter 2: Semidefinite Optimization; Chapter 3: Polynomial Optimization, Sums of Squares, and Applications; Chapter 4: Nonnegative Polynomials and Sums of Squares; Chapter 5: Dualities; Chapter 6: Semidefinite Representability; Chapter 7: Convex Hulls of Algebraic Sets; Chapter 8: Free Convexity; Chapter 9: Sums of Hermitian Squares: Old and New; Appendix A: Background Material.


Physical Review A | 2004

Complete family of separability criteria

Andrew C. Doherty; Pablo A. Parrilo; Federico M. Spedalieri

We introduce a family of separability criteria that are based on the existence of extensions of a bipartite quantum state rho to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the nonexistence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program. Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known positive partial transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that, in turn, allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states.


Physical Review Letters | 2002

Distinguishing Separable and Entangled States

Andrew C. Doherty; Pablo A. Parrilo; Federico M. Spedalieri

We show how to design families of operational criteria that distinguish entangled from separable quantum states. The simplest of these tests corresponds to the well-known Peres-Horodecki positive partial transpose (PPT) criterion, and the more complicated tests are strictly stronger. The new criteria are tractable due to powerful computational and theoretical methods for the class of convex optimization problems known as semidefinite programs. We successfully applied the results to many low-dimensional states from the literature where the PPT test fails. As a by-product of the criteria, we provide an explicit construction of the corresponding entanglement witnesses.


arXiv: Optimization and Control | 2005

The Lax conjecture is true

Adrian S. Lewis; Pablo A. Parrilo; Motakuri V. Ramana

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov.

Collaboration


Dive into the Pablo A. Parrilo's collaboration.

Top Co-Authors

Avatar

Asuman E. Ozdaglar

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan S. Willsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James Saunderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Venkat Chandrasekaran

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamza Fawzi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephen Prajna

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge