Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo A. Valdés is active.

Publication


Featured researches published by Pablo A. Valdés.


Journal of Photochemistry and Photobiology B-biology | 2010

Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications

Frederic Leblond; Scott C. Davis; Pablo A. Valdés; Brain W. Pogue

Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultrasound.


Journal of Neurosurgery | 2011

Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker.

Pablo A. Valdés; Frederic Leblond; Anthony Kim; Brent T. Harris; Brian C. Wilson; Xiaoyao Fan; Tor D. Tosteson; Alex Hartov; Songbai Ji; Kadir Erkmen; Nathan E. Simmons; Keith D. Paulsen; David W. Roberts

OBJECT Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. METHODS The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board-approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. RESULTS A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeons visual perception were classified correctly in an analysis of all tumors. CONCLUSIONS These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of intracranial tumors.


Journal of Neurosurgery | 2011

Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters: Clinical article

David W. Roberts; Pablo A. Valdés; Brent T. Harris; Kathryn Fontaine; Alexander Hartov; Xiaoyao Fan; Songbai Ji; S. Scott Lollis; Brian W. Pogue; Frederic Leblond; Tor D. Tosteson; Brian C. Wilson; Keith D. Paulsen

OBJECT The aim of this study was to investigate the relationships between intraoperative fluorescence, features on MR imaging, and neuropathological parameters in 11 cases of newly diagnosed glioblastoma multiforme (GBM) treated using protoporphyrin IX (PpIX) fluorescence-guided resection. METHODS In 11 patients with a newly diagnosed GBM, δ-aminolevulinic acid (ALA) was administered to enhance endogenous synthesis of the fluorophore PpIX. The patients then underwent fluorescence-guided resection, coregistered with conventional neuronavigational image guidance. Biopsy specimens were collected at different times during surgery and assigned a fluorescence level of 0-3 (0, no fluorescence; 1, low fluorescence; 2, moderate fluorescence; or 3, high fluorescence). Contrast enhancement on MR imaging was quantified using two image metrics: 1) Gd-enhanced signal intensity (GdE) on T1-weighted subtraction MR image volumes, and 2) normalized contrast ratios (nCRs) in T1-weighted, postGd-injection MR image volumes for each biopsy specimen, using the biopsy-specific image-space coordinate transformation provided by the navigation system. Subsequently, each GdE and nCR value was grouped into one of two fluorescence categories, defined by its corresponding biopsy specimen fluorescence assessment as negative fluorescence (fluorescence level 0) or positive fluorescence (fluorescence level 1, 2, or 3). A single neuropathologist analyzed the H & E-stained tissue slides of each biopsy specimen and measured three neuropathological parameters: 1) histopathological score (0-IV); 2) tumor burden score (0-III); and 3) necrotic burden score (0-III). RESULTS Mixed-model analyses with random effects for individuals show a highly statistically significant difference between fluorescing and nonfluorescing tissue in GdE (mean difference 8.33, p = 0.018) and nCRs (mean difference 5.15, p < 0.001). An analysis of association demonstrated a significant relationship between the levels of intraoperative fluorescence and histopathological score (χ(2) = 58.8, p < 0.001), between fluorescence levels and tumor burden (χ(2) = 42.7, p < 0.001), and between fluorescence levels and necrotic burden (χ(2) = 30.9, p < 0.001). The corresponding Spearman rank correlation coefficients were 0.51 (p < 0.001) for fluorescence and histopathological score, and 0.49 (p < 0.001) for fluorescence and tumor burden, suggesting a strongly positive relationship for each of these variables. CONCLUSIONS These results demonstrate a significant relationship between contrast enhancement on preoperative MR imaging and observable intraoperative PpIX fluorescence. The finding that preoperative MR image signatures are predictive of intraoperative PpIX fluorescence is of practical importance for identifying candidates for the procedure. Furthermore, this study provides evidence that a strong relationship exists between tumor aggressiveness and the degree of tissue fluorescence that is observable intraoperatively, and that observable fluorescence has an excellent positive predictive value but a low negative predictive value.


Asn Neuro | 2011

Current Review of in Vivo GBM Rodent Models: Emphasis on the CNS-1 Tumour Model

Valerie L. Jacobs; Pablo A. Valdés; William F. Hickey; Joyce A. De Leo

GBM (glioblastoma multiforme) is a highly aggressive brain tumour with very poor prognosis despite multi-modalities of treatment. Furthermore, recent failure of targeted therapy for these tumours highlights the need of appropriate rodent models for preclinical studies. In this review, we highlight the most commonly used rodent models (U251, U86, GL261, C6, 9L and CNS-1) with a focus on the pathological and genetic similarities to the human disease. We end with a comprehensive review of the CNS-1 rodent model.


Neuro-oncology | 2011

δ-aminolevulinic acid–induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy

Pablo A. Valdés; Anthony Kim; Marco Brantsch; Carolyn Niu; Ziev B. Moses; Tor D. Tosteson; Brian C. Wilson; Keith D. Paulsen; David W. Roberts; Brent T. Harris

Extent of resection is a major goal and prognostic factor in the treatment of gliomas. In this study we evaluate whether quantitative ex vivo tissue measurements of δ-aminolevulinic acid-induced protoporphyrin IX (PpIX) identify regions of increasing malignancy in low- and high-grade gliomas beyond the capabilities of current fluorescence imaging in patients undergoing fluorescence-guided resection (FGR). Surgical specimens were collected from 133 biopsies in 23 patients and processed for ex vivo neuropathological analysis: PpIX fluorimetry to measure PpIX concentrations (C(PpIX)) and Ki-67 immunohistochemistry to assess tissue proliferation. Samples displaying visible levels of fluorescence showed significantly higher levels of C(PpIX) and tissue proliferation. C(PpIX) was strongly correlated with histopathological score (nonparametric) and tissue proliferation (parametric), such that increasing levels of C(PpIX) were identified with regions of increasing malignancy. Furthermore, a large percentage of tumor-positive biopsy sites (∼40%) that were not visibly fluorescent under the operating microscope had levels of C(PpIX) greater than 0.1 µg/mL, which indicates that significant PpIX accumulation exists below the detection threshold of current fluorescence imaging. Although PpIX fluorescence is recognized as a visual biomarker for neurosurgical resection guidance, these data show that it is quantitatively related at the microscopic level to increasing malignancy in both low- and high-grade gliomas. This work suggests a need for improved PpIX fluorescence detection technologies to achieve better sensitivity and quantification of PpIX in tissue during surgery.


Journal of Biological Chemistry | 2007

Selective incorporation of polyanionic molecules into hamster prions

James C. Geoghegan; Pablo A. Valdés; Nicholas R. Orem; Nathan R. Deleault; R. Anthony Williamson; Brent T. Harris; Surachai Supattapone

The central pathogenic event of prion disease is the conformational conversion of a host protein, PrPC, into a pathogenic isoform, PrPSc. We previously showed that the protein misfolding cyclic amplification (PMCA) technique can be used to form infectious prion molecules de novo from purified native PrPC molecules in an autocatalytic process requiring accessory polyanions (Deleault, N. R., Harris, B. T., Rees, J. R., and Supattapone, S. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 9741-9746). Here we investigated the molecular mechanism by which polyanionic molecules facilitate infectious prion formation in vitro.Ina PMCA reaction lacking PrPSc template seed, synthetic poly(A) RNA molecules induce hamster (Ha)PrPC to adopt a protease-sensitive, detergent-insoluble conformation reactive against antibodies specific for PrPSc. During PMCA, labeled nucleic acids form nuclease-resistant complexes with HaPrP molecules. Strikingly, purified HaPrPC molecules subjected to PMCA selectively incorporate an ∼1-2.5-kb subset of [32P]poly(A) RNA molecules from a heterogeneous mixture ranging in size from ∼0.1 to >6 kb. Neuropathological analysis of scrapie-infected hamsters using the fluorescent dye acridine orange revealed that RNA molecules co-localize with large extracellular HaPrP aggregates. These findings suggest that polyanionic molecules such as RNA may become selectively incorporated into stable complexes with PrP molecules during the formation of native hamster prions.


IEEE Journal of Selected Topics in Quantum Electronics | 2010

Review of Neurosurgical Fluorescence Imaging Methodologies

Brian W. Pogue; Summer L. Gibbs-Strauss; Pablo A. Valdés; Kimberley S. Samkoe; David W. Roberts; Keith D. Paulsen

Fluorescence imaging in neurosurgery has a long historical development, with various biomarkers and biochemical agents being used, and numerous technological approaches. This review focuses on contrast agents, summarizing endogenous fluorescence, exogenously stimulated fluorescence, and exogenous contrast agents, and then on tools used for imaging. It ends with a summary of key clinical trials that lead to consensus studies. The practical utility of protoporphyrin IX (PpIX) as stimulated by administration of δ-aminolevulinic acid has had substantial pilot clinical studies and basic science research completed. Recently, multicenter clinical trials using PpIX fluorescence to guide resection have shown efficacy for improved short-term survival. Exogenous agents are being developed and tested preclinically, and hopefully hold the potential for long-term survival benefit if they provide additional capabilities for resection of microinvasive disease or certain tumor subtypes that do not produce PpIX or help delineate low-grade tumors. The range of technologies used for measurement and imaging varies widely, with most clinical trials being carried out with either point probes or modified surgical microscopes. Currently, optimized probe approaches are showing efficacy in clinical trials, and fully commercialized imaging systems are emerging, which will clearly help to lead adoption into neurosurgical practice.


Journal of Biomedical Optics | 2011

Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery

Pablo A. Valdés; Anthony Kim; Frederic Leblond; Olga M. Conde; Brent T. Harris; Keith D. Paulsen; Brian C. Wilson; David W. Roberts

Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters. We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity = 94%, sensitivity = 94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients.


Scientific Reports | 2012

Quantitative, spectrally-resolved intraoperative fluorescence imaging.

Pablo A. Valdés; Frederic Leblond; Valerie L. Jacobs; Brian C. Wilson; Keith D. Paulsen; David W. Roberts

Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field.


Neurosurgical Focus | 2011

Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

Kimon Bekelis; Pablo A. Valdés; Kadir Erkmen; Frederic Leblond; Anthony Kim; Brian C. Wilson; Brent T. Harris; Keith D. Paulsen; David W. Roberts

OBJECT Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. METHODS A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board-approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. RESULTS The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological analysis. CONCLUSIONS Fluorescence-guided resection may be a useful adjunct in the resection of skull base meningiomas. The use of a quantitative intraoperative probe to detect PpIX concentration allows more accurate determination of neoplastic tissue in meningiomas than visible fluorescence and is readily applicable in areas, such as the skull base, where complete resection is critical but difficult because of the vital structures surrounding the pathology.

Collaboration


Dive into the Pablo A. Valdés's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic Leblond

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Brian C. Wilson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Brent T. Harris

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anthony Kim

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge